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Abstract. This is a proof of a prefatory proposition assumed by R.A. Fisher

in his 1925 paper Theory of Statistical Estimation to justify his use of an
infinite hypothetical population distributed in a definite manner.

1. Introduction

In 1925 R.A. Fisher [1] justified the use of an infinite hypothetical population
distributed in a definite manner with these words in a prefatory note to his paper
Theory of Statistical Estimation:

Imagine a population of N individuals belonging to s classes, the
number in each class k being pkN . This population can be arranged
in order in N ! ways. Let it be so arranged and let us call the
first n individuals in each arrangement a sample of n. Neglecting
the order within the sample, these samples can be classified into
the several possible types of sample according to the number of
individuals of each class which appear. Let this be done, and denote
the proportion of samples which belong to type j by qj , the number
of types being t. Consider the following proposition.

Given any series of proper fractions P1, P2, . . ., Ps, such that
S(Pk) = 1, and any series of positive numbers η1, η2, . . ., ηt,
however small, it is possible to find a series of proper fractions
Q1, Q2, . . ., Qt, and a series of positive numbers ǫ1, ǫ2, . . ., ǫs, and
an integer N0, such that, if N > N0 and |pk−Pk| < ǫk for all values
of k, then will |qj − Qj | < ηj for all values of j.

He went on to comment:

I imagine it possible to provide a rigorous proof of this proposition,
but I do not propose to do so. If it be true, we may evidently speak
without ambiguity or lack of precision of an infinite population
characterised by the proper fractions, P , in relation to the random
sampling distributions of samples of a finite size n.

Since Fisher did not prove this at the time, I intend to do so here. The proof is
not difficult, since it only requires finding an N0 more than large enough to ensure
that the proposition is satisfied.

Some clarifications might be worth making, since from personal experience the
proposition can sometimes appear confusing and abbreviated.
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First, S(Pk) = 1 simply means that the sum over k is 1, i.e.
∑s

k=1 Pk = 1.
Second, there are more possible types of samples than there are classes (except in

the degenerate case s = 1 or when the sample size n = 1) and, for large enough N

to make every potential type possible, we are looking at the number of compositions
of n into s non-negative parts. In other words t is simply a function of s and n

namely t =
(

s+n−1
s−1

)

. So when we are given s and t at the start of the proposition,
we are also given the sample size n.

Third, the values of pk have to be decided once N is known since each pkN must
be an integer, so after Q1, Q2, . . ., Qt, ǫ1, ǫ2, . . ., ǫs, and N0 are chosen; the values
of qj are determined by those of pk. In order, we are given the values of Pk and ηj

and so implicitly n, then we have to choose the values of Qj , ǫk and N0, so that all
permitted values of pk and N provide satisfactory values of qj .

Fourth, Pk and Qj being proper fractions seems to mean they are real numbers
in the interval [0, 1]; unlike pk and qj , they do not have to rational. In fact all we
need is Pk ≥ 0 for all k together with their sum over k being 1; any Pk = 0 can
be ignored by setting the corresponding pk = 0, while the degenerate case where
P1 = 1 is trivially true because with p1 = 1 there would only be one type of sample
of size n. The restrictions on Qj resulting from qj and ηj mean that no additional
restriction is required.

Fifth, by the definition, we need
∑s

k=1 pkN = N as every member of the
population is in one of the classes, or equivalently

∑s

k=1 pk = 1. This will lead

to
∑t

j=1 qj = 1. Although the positive values of ηj mean there is no necessary

requirement for
∑t

j=1 Qj = 1, it would be sensible to choose values of Qj which
would work for sufficiently large N whatever the values of ηj are, and so which do
sum to 1.

2. An example

To take a relatively simple example, suppose there are three classes so s = 3 and
we are given P1 = 0.6, P2 = 0.3 and P3 = 0.1; furthermore the sample size is to be
n = 2 and the required accuracy is to be 0.001.

There are clearly six potential types of samples of size two: they are two from
class 1, two from class 2, two from class 3, one from class 1 and one from class 2,
one from class 1 and one from class 3, or one from class 2 and one from class 3.
Since we aim to have the values of Qj equal to the limiting values as N0 and N

increase and the ηj reduce, we will choose them as if we were drawing twice with

replacement from an urn with ten balls (6 of class 1, 3 of class 2 and 1 of class 3)
where the values corresponding to the respective types would be

Q1 = P 2
1 = 0.36

Q2 = P 2
2 = 0.09

Q3 = P 2
3 = 0.01

Q4 = 2P1P2 = 0.36
Q5 = 2P1P3 = 0.12
Q6 = 2P2P3 = 0.06.

These are not the proportions of the types of samples resulting from counting
the first two elements of Fisher’s permutations, or equivalently sampling without

replacement from the same urn.
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If in terms of the proposition we had N = 10 and p1N = 6, p2N = 3 and
p3N = 1 then

q1 = 6
10

5
9 = 0.3333 . . .

q2 = 3
10

2
9 = 0.0666 . . .

q3 = 1
10

0
9 = 0

q4 = 6
10

3
9 + 3

10
6
9 = 0.4

q5 = 6
10

1
9 + 1

10
6
9 = 0.1333 . . .

q6 = 3
10

1
9 + 1

10
3
9 = 0.0666 . . . ,

giving in this case max
j

|qj − Qj | = q4 − Q4 = 0.04.

The position becomes more complicated for some other values of N , since there
may not then a natural set of choices for pk, but we could always choose them so
that PkN − 1 < pkN < PkN + 1 for all k or equivalently |pk − Pk| < 1

N
, and this

would give us one or two choices for each pk while enabling us to make their sum
1. So for example if N = 23, then we can have p1 as 13

23 or 14
23 , p2 as 6

23 or 7
23 , and

p3 as 2
23 or 3

23 ; since they must sum to 1, we have the choice between 13
23 + 7

23 + 3
23 ,

14
23 + 6

23 + 3
23 , or 17

23 + 7
23 + 2

23 . But we must decide each ǫk before knowing N , so if

instead we set each ǫk equal to 1
N0

, we have PkN − N
N0

< pkN < PkN + N
N0

, which
for N ≥ N0 is a wider interval and so we can still make suitable choices for various
pk.

If we do then we will have

q4 − Q4 = 2p1p2
N

N−1 − 2P1P2

< 2
(

P1 + 1
N0

)(

P2 + 1
N0

)

N
N−1 − 2P1P2

= 1.8
N0

+ 2
N2

0

+ 0.36
N−1 + 1.8

N0(N−1) + 2
N2

0
(N−1)

which is a decreasing function of both N0 and N and which tends towards 0 as
N0 and so N increase. The other bounds, positive or negative, will involve similar
calculations, but this one is potentially largest in absolute terms. It is less than
0.001 if N ≥ N0 ≥ 2162.

So in this example, given P1 = 0.6, P2 = 0.3 and P3 = 0.1 and η1 = η2 = η3 =
η4 = η5 = η6 = 0.001, a solution is (with the types in the order described earlier)
Q1 = 0.36, Q2 = 0.09, Q3 = 0.01, Q4 = 0.36, Q5 = 0.12 and Q6 = 0.06, with
ǫ1 = ǫ2 = ǫ3 = 1

2162 = 0.0004625 . . . , and N0 = 2162.
In fact 2162 is more than enough given that each pkN must be an integer and the

inequalities of |pk − Pk| < 1
N0

have to be satisfied for all k, restricting further the
choice of values for p1, p2 and p3. As far as I can tell, the largest counter-example
comes when N0 = 1559, N = 1560, p1N = 936, p2N = 469 and p3N = 155, leading
to |q4 − Q4| = 0.0010006 . . ., meaning we could say N ≥ N0 ≥ 1560 is sufficient in
this example. If we reduced the ǫk to say 1

2N0

then we could find an even smaller
N0.

3. Proof of the proposition

In the degenerate case where s = 1 and all the individuals are in the same class
(so P1 = 1 and t = 1), we simply take Q1 = 1, ǫ1 = η1 and N0 = 1 to satisfy the
proposition, no matter what the sample size n is. The rest of the proof deals with
the more interesting case where s > 1.
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Given the number of classes s and the number of potential types of samples t, we
have t =

(

s+n−1
s−1

)

, where n is the size of the sample. This is s+n−1
s−1

s+n−2
s−2 · · · n+1

1 ,

which is an increasing function of n (for s > 1), so there is a unique value of n

which will give the given value of t for the given value of s.
Let η = min

j
ηj . If we can ensure |qj − Qj | < η for all values of j then we will

also have |qj − Qj | < ηj for all values of j.
If a particular type j of sample of size n has nj,1 members of class 1, nj,2 members

of class 2, and so on up to nj,s members of class s, then the number of different

ways of distinctly ordering that type of sample is oj = n!
nj,1!nj,2!···nj,s! . This cannot

be greater than n! (with equality only when n ≤ s and each of the nj,k are 1 or 0).
We also have

∑s

k=1 nj,k = n.
We will take the obvious choice for values for each of the Qj , namely

Qj = oj

s
∏

k=1

P
nj,k

k

but the formula for qj in terms of the pk is more complicated, namely

qj = oj

(N − n)!

N !

s
∏

k=1

(pkN)!

(pkN − nj,k)!

and we need to consider the positive and negative extremes of the differences
between these namely

qj − Qj = oj

(

(N − n)!

N !

s
∏

k=1

(pkN)!

(pkN − nj,k)!
−

s
∏

k=1

P
nj,k

k

)

.

But
1

Nn
≤

(N − n)!

N !
≤

1

(N − n)n

and

(pkN − n)nj,k ≤
(pkN)!

(pkN − nj,k)!
≤ (pkN)nj,k

so there are loose bounds

oj

(

s
∏

k=1

(

pkN − nj,k

N

)nj,k

−

s
∏

k=1

P
nj,k

k

)

≤ qj − Qj

≤ oj

(

s
∏

k=1

(

pkN

N − n

)nj,k

−

s
∏

k=1

P
nj,k

k

)

.

We can set ǫk = 1
N0

for all k so we have PkN − N
N0

< pkN < PkN + N
N0

. This
enables pkN to be an integer and the sum over k to be N ; in general there will be
several possibilities. This gives

oj

(

s
∏

k=1

(

Pk −
1

N0
−

nj,k

N

)nj,k

−

s
∏

k=1

P
nj,k

k

)

≤ qj − Qj

≤ oj

(

s
∏

k=1

(

Pk +
Pkn

N − n
+

1

N0
+

n

N0(N − n)

)nj,k

−
s
∏

k=1

P
nj,k

k

)

.

The lower bound is negative (certainly if N0 ≥
nj,s+1

Pk
) but is an increasing

function of N0 and N and tends towards 0 as N0 and so N increase. Similarly the
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upper bound is positive and tends towards 0 as N0 and so N increase. So for each
j there is some minimum value where any greater N0 ensures the absolute value
of both the lower and upper bounds are less than η. Since there a finite number t

of types of sample giving different values of N0, we take the largest such N0 and
ǫk = 1

N0

so that for all j the absolute value of both the lower and upper bounds
are less than η. �

We could go slightly further than this and give an explicit though loose expression
for N0 with ǫk = 1

N0

. The lower bound is a decreasing function of Pk (i.e. becomes

more negative as it increases) and the upper bound an increasing function (more
positive), so we will have looser bounds if we replace Pk by 1 and then take the
product; we can also replace

nj,k

N
by n

N
. We know oj ≤ n! and that the bounds

would also loosen if we replace N by N0. So we have

n!

((

1 −
n + 1

N0

)n

− 1

)

≤ qj − Qj ≤ n!

((

1 +
n + 1

N0 − n

)n

− 1

)

.

So the upper bound is larger in absolute terms than the lower bound, and we
can concentrate on it. If we then use

(

1 + c
n

)n
≤ exp(c) then we have

|qj − Qj | ≤ n!

(

exp

(

n(n + 1)

N0 − n

)

− 1

)

and we want this to be be less than η so requiring

N0 >
n(n + 1)

loge

(

1 + η
n!

) + n.

We can make this simpler though looser, first by using loge (1 + c) > c
1+c

and

then n(n + 1)n! + n(n + 2) < (n + 2)! and η ≤ 1 to give a loose requirement for N0

(with ǫk = 1
N0

and the natural values of Qj based on Pk) so that |qj − Qj | ≤ η for
all j, namely

N0 >
(n + 2)!

η
.

It is possible to tighten this, but Fisher only required proof of existence for his
purpose of assuming that permutations and limits could be used to justify sampling
theory. Just how loose this has become can be seen from the example: using n = 2
we find here that N > N0 > 24000 and ǫk = 1

24000 was sufficient to satisfy the
proposition, compared with the 2162 calculated earlier.
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