An approxiate solution to a locked box game using failed recursions

Henry Bottomley
5 Leydon Close, London SE16 5PF
se16@btinternet.com

March 10, 2006

Abstract

The solution to a particular two player game can be derived by using a reverse recursion, using approximate solutions and adjusting them when the results of the recursion are implausibile.

1 Introduction and game rules

In a usenet discussion on sci.math and alt.math.recreational called "A Recursive Game" in December 2005, Frank J. Lhota proposed a game involving two individuals, one of whom we will call the house and the other the player, and two transparent but invisibly lockable boxes. In each round, the house would lock one of the boxes and unlock the other. The player could see the contents of the boxes but not which was locked, and would then try to open one of the boxes; if it was unlocked, the player would obtain its contents and the game would end, while if it was locked, the house would add one dollar to the unlocked box and then move to the next round by choosing which box to lock next. Initially both boxes start empty. What is the value of the game to the player (i.e. the expected winnings, or the fair entry fee to be charged by the house) if both play optimally? How long should the game last?

2 Payoff tables

Broadly following the notation of the usenet discussion set out by the user "quasi" (who also did some of the analysis), if in a particular position one box
has n dollars and the other m dollars, we can call the value of the position $v[n, m]$. The payoff table for the player looks like

	House locks first box	House locks second box
Player tries to open first box	$v[n, m+1]$	n
Player tries to open second box	m	$v[n+1, m]$

We are trying to calculate $v[0,0]$ and that depends on the first round where the payoff matrix is

	House locks first box	House locks second box
Player tries to open first box	$v[0,1]$	0
Player tries to open second box	0	$v[1,0]$

Clearly $v[1,0]=v[0,1]$ since we simply reverse the payoff matrix between the first and second boxes; this value is positive since the player has some chance of winning something. The symmetry of this first round means that the optimal tactic is for each player is to choose each box with equal probability, so there is half a chance of the game ending in the first round with no win for the player and half a chance of it continuing. So we can conclude that $v[0,0]=v[1,0] / 2$.

In general, $v[n, m]=v[m, n]$ since we simply reverse the payoff matrix between the first and second boxes. We can go further and note that the player can be certain of winning at least the smaller amount in the two boxes and that both the house and the player need only make their decisions based on the difference between the two boxes. So

$$
v[n+m, m]=v[m, n+m]=m+v[n, 0]
$$

and since only the difference matters we can simplify the notation further by writing $v[n]$ for $v[n, 0]$ or $v[0, n]$. So basing the payoff table on the assumption one of the boxes is empty, it becomes

	House locks valuble box	House locks empty box
Player tries to open valuble box	$1+v[n-1]$	n
Player tries to open empty box	0	$v[n+1]$

This is enough to put some useful constraints on $v[n]$. For example, we have

$$
v[n] \leq \max \{1+v[n-1], 0\}
$$

since the house can decide to lock the more valuable box. Similarly

$$
v[n] \geq \min \{1+v[n-1], n\}
$$

since the player can try to open the more valuable box. Combining these gives

$$
n \leq v[n] \leq 1+v[n-1] .
$$

3 Minimax solutions

These constraints mean we are not going to find a simple strategy for each round of the game and so we must look for a mixed strategy: the player and the house must randomise their choices to play optimally. Intuitively this is not a surprise, since if the house has clearly decided to lock a particular box the player will generally try to open that box, adding to the value of the game and seeing more money being put in the boxes. Similarly if the player has clearly decided to try to open a particular box, the house will try to unlock that box, reducing the value of the game and avoiding having to add more money overall to the boxes.

Writing $p[n]$ as the probability that the house locks the emptier box when the difference between them is n, and $q[n]$ the probability that the player tries to open the emptier box, we find the payoff matrix above gives the value (for $n>0$)
$v[n]=p[n] q[n] v[n+1]+p[n](1-q[n]) n+(1-p[n])(1-q[n])(1+v[n-1])$
and we need to find the minimax solutions. Fortunately this value is linear in both $p[n]$ and $q[n]$, implying that the following are true simultaneously for optimal $p[n]$ and $q[n]$:

$$
\begin{aligned}
& v[n]=p[n] v[n+1] \\
& v[n]=q[n] v[n+1]+(1-q[n]) n \\
& v[n]=p[n] n+(1-p[n])(1+v[n-1]) \\
& v[n]=(1-q[n])(1+v[n-1])
\end{aligned}
$$

Eliminating $p[n]$ and $q[n]$ gives

$$
v[n]+v[n-1] v[n]+v[n] v[n+1]=v[n+1]+v[n-1] v[n+1]+v[n] n
$$

which on the face of it is not particularly helpful. There is little point in trying to solve this for $v[n]$ in terms $v[n-1]$ and $v[n+1]$, so we should
instead look at one of

$$
\begin{aligned}
v[n-1] & =\frac{v[n](v[n+1]+v[n]-n)-v[n+1]}{v[n+1]-v[n]} \\
v[n+1] & =\frac{v[n](1+v[n-1]-n)}{1+v[n-1]-v[n]}
\end{aligned}
$$

At first glance both of these fail to give us a starting point for a recursion, indeed doubly so since we need two values to calculate each new value.

Fortunately, if we choose the second recursion we can halve our problem since we know from the first round of the game that

$$
v[1]=2 v[0] .
$$

This still is not enough since the calculations soon get complicated

$$
\begin{aligned}
& v[2]=\frac{2 v[0]^{2}}{1-v[0]} \\
& v[3]=\frac{2 v[0]^{2}(2 v[0]-1)}{1+v[0]-4 v[0]^{2}} \\
& \text { etc. }
\end{aligned}
$$

But it may point the way to go.

4 Testing approximate solutions and finding the value of the game

Perhaps if we guessed a value for $v[0]$, doubled the guess for $v[1]$, and then applied the recursion, we could see what values were produced.

Suppose for example, we tried $v[0]=0.5$. We would get

$v[0]$	0.5
$v[1]$	1
$v[2]$	1

We can stop there, because we know that we should have $n \leq v[n]$ from earlier. So instead suppose we start with $v[0]=0.75$. This time we would get

$v[0]$	0.75
$v[1]$	1.5
$v[2]$	4.5

Again we can stop there because we should have $v[n] \leq 1+v[n-1]$.
But we are now on the right approach. 0.625 gets us one step further with

$v[0]$	0.625
$v[1]$	1.25
$v[2]$	2.0833333333
$v[3]$	3.125

which is unfortunately too high, but suggests an algorithm: whenever we have to stop the recursion because $v[n]$ seems to be too low compared with n, we should restart with a higher guess for $v[0]$; and whenever we have to stop because $v[n]$ seems to be too high compared with $1+v[n-1]$, we should restart with a lower guess for $v[0]$.

This algorithm and recursion indeed works to produce more accurate estimates of $v[0]$, though we still soon get unnaceptable figures for some $v[n]$. Trying 0.6245357205 gives (with decimals truncated down if necessary from now on)

$v[0]$	0.6245357205
$v[1]$	1.249071441
$v[2]$	2.0776669711
$v[3]$	3.0191015838
$v[4]$	4.0038064511
$v[5]$	5.0002210521
$v[6]$	5.3085018300

while trying 0.6245357206 gives

$v[0]$	0.6245357206
$v[1]$	1.2490714412
$v[2]$	2.0776669723
$v[3]$	3.0191016059
$v[4]$	4.0038079734
$v[5]$	5.0007192467
$v[6]$	6.1651961331

showing that with even ten decimal places of accuracy for $v[0]$ fails to give a credible figure for $v[6]$. But we can reach any degree of precsion we want, providing we start with an precise enough value for $v[0]$ and our calculations are accurate enough.

Here are the first 2000 digits of $v[0]$:
0.62453572058294332938468293828432119587938741061271 18900215986068628558854926556110883051325673667572 04253365944025976637195380204540240324553998181163 83759034757645945776224999372028404766351056176153 71558306856694859734988590556626222109038858705734 46176342628869835117656095478443629408153110588772 70526466016619601565063385468143123245105739266916 07789214302262696101697443727304614848889969835311 27217870164375958387680048316592446682775491821521 03627848666657910524753885144949569480840118252827 86261358632524032903411061898379587127204882872942 87648023884026884505454433297879667720923195431145 14330093324795479505816092749737793116715743862644 02263089069771162830431593887717503686918801061473 41635945110299526847842367216541344008523618239212 95401079065975801377791152977166628241288112832528 66381531845053735445039534858967934978274289280837 94954243380644344988700766710779544726625801174640 97850112537473066587601206973896715077829880301246 33408498316702355099908281144791776881656001076063 85980755648292974039424938133501410887964710185306 50849132012294241144736990439204855100010577553353 74032383222334728243401902817808055366791778370532 39048707305056634974117436654979863866165844754387 39928003542790042927240654661602916908196806422532 46153081110516367128062163765596921119578131952978 83414852873351980643123559309188785268481666342762 73203584953991419431571159818696726051986359743687 26366618850577391301139457798636934897411842978908 96856053052970505493277530625341079767020948387535 91267442898069941628150089821122656432996948092264 33599049017762263856474613464317983530470546055705 09579382649713167150514401716289857845933258214763 78222995816440066357718396848744236602152748755533 23860209705679971014612023957813607968077986317417 86091221094792569171299255850886894495793586706416 88391150942836676219946416314527899837834522693056 26646831215451375380849601854388729024095358793295 02179259617332697575943278149284781679849380015075 94656095216664378964911081904501155512817467501833 and in a sense we now have a solution for the value of the game.

5 Optimal strategies

So far this has not yet told us much about the optimal strategies for the house and player. Going back to the minimax solution, we can find an easy way of calculating $p[n]$ the probability that the house locks the emptier box when the difference between them is n, and $q[n]$ the probability that the player tries to open the emptier box. We can use

$$
\begin{aligned}
p[n] & =\frac{v[n]}{v[n+1]} \\
q[n] & =\frac{v[n]-n}{v[n+1]-n}
\end{aligned}
$$

to produce the following table

n	$v[n]$	$p[n]$	$q[n]$
0	0.6245357205	0.5	0.5
1	1.2490714411	0.6011894388	0.2311209748
2	2.0776669721	0.6881739159	0.0762112158
3	3.0191016021	0.7540575916	0.0190291446
4	4.0038077138	0.8006599767	0.0038053002
5	5.0006342643	0.8334264590	0.0006342069
6	6.0000906018	0.8571544134	0.0000906008
7	7.0000113251	0.8750012780	0.0000113251
8	8.0000012583	0.8888890162	0.0000012583
9	9.0000001258	0.9000000115	0.0000001258
10	10.0000000114	0.9090909100	0.0000000114

For large n, we find $v[n]$ is close to but above $n+0.4566281571 /(n+1)$!. So $p[n]$ gets close to $n /(n+1)$ and $q[n]$ gets close to $0.4566281571 /(n+1)$!.

This tells us that when the difference between the boxes is great, the player usually tries to open the more valuable box, and that the house tends to leave that box unlocked, though not with quite such a high probability. There is an intutitive explanation for that behaviour: the player is only slightly disadvantaged when playing a strategy of always picking the more valuable box when the difference is large, but would be facing a substantial opportunity cost when successfully opening the emptier box, while the house has to balance the small extra cost of leaving the more valuable box unlocked but unopened against the less likely but more profitable opportunity of having the emptier box opened.

6 Expected length of the game

Given an accurate enough estimate of the value of the game, we can also calculate some other information about the game when played optimally, such as the expected number of rounds, the distribution of the number of rounds, and the distribution of how much the player takes from the boxes.

For example, if $t[n]$ is the expected number of future rounds when the difference between the boxes is n then we have

$$
\begin{aligned}
& t[0]=1+t[1] / 2 \\
& t[n]=1+p[n] q[n] t[n+1]+(1-p[n])(1-q[n])(t[n-1])
\end{aligned}
$$

and since we now know $p[n]$ and $q[n]$ we can use the same techniques of recursive approximation with

$$
\begin{aligned}
& t[1]=2 t[0]-2 \\
& t[n+1]=\frac{t[n]-(1-p[n])(1-q[n]) t[n-1]-1}{p[n] q[n]}
\end{aligned}
$$

with the requirement that

$$
1 \leq t[n]
$$

since we know that if the game has not finished then we must play at least one more round; in this game we also have

$$
t[n+1] \leq t[n]
$$

since as n increases the game is likely to end more quickly since the house and the player both increase the likelihood of the more valuable box being opened. This method will give a value of $t[0]$ of just over 1.9023718998 (slightly less expected time than flipping a coin and waiting until it comes up heads). Even using high precision values of $p[n]$ and $q[n]$ we would still get an implausible value for $t[6]$ starting from $t[0]$ with ten decimal places of accuracy.

Here are the first 200 decimal places of the true value for $t[0]$:
1.90237189983762404708146193968978343007235722299043

52580572632489339292806521995958614511609964756773
42930587588181344989313958270320343623510894520891
82465091044157834861679598640984083598444065019046
giving the following truncated values:

$t[0]$	1.9023718998
$t[1]$	1.8047437996
$t[2]$	1.5934512036
$t[3]$	1.4028392395
$t[4]$	1.2822768795
$t[5]$	1.2140782081
$t[6]$	1.1734990523
$t[7]$	1.1466953926
$t[8]$	1.1274115374
$t[9]$	1.1127412512
$t[10]$	1.1011583046

7 Checking results and producing further information

We can also get good estimates of $t[n]$ by an alternative more direct method, simply by calculating the probabilities of reaching each possible position since we know $p[n]$ and $q[n]$.

Clearly reaching the position $[0,0]$ has a probability of 1 since the game starts in that position, while $[1,0]$ and $[0,1]$ each have a probability of 0.25 of being reached, and there is a probability of 0.5 of finishing after just one round and the player leaving empty-handed.

Similarly, the positions $[2,0]$ and $[0,2]$ each have a probability 0.0347368722 of being reached, while $[1,1]$ has a probability of 0.1533185377 of being reached; there is a probability of 0.2772077176 of finishing after exactly two rounds, with a probability of 0.2311209748 of the player taking one dollar in the second round and a probability of 0.0460867428 of the player being left empty-handed in the second round.

Continuing this calculation further allows the possibility of finding that the probability that the game ends when the player chooses the more valuable box which the house has unlocked is 0.345640505868 , when the player chooses the emptier box which the house has unlocked is 0.0592654469 , and when the boxes are equal and the player happens to have chosen the unlocked box is 0.5950940471 (most likely in the first round).

The probability of the game ends after a particular number of rounds is

Number of rounds in game	Probability
1	0.5
2	0.2772077176
3	0.1224766469
4	0.0563087341
5	0.0243016050
6	0.0110695279
7	0.0047702535
8	0.0021715786
9	0.0009357196
10	0.0004259541

allowing the value of $t[0]$ to be checked, while the probability of winning different amounts in the game is

Amount won	Probability
0	0.5477548539
1	0.3170345118
2	0.1054875782
3	0.0238104294
4	0.0047516720
5	0.0009332202
6	0.0001830643
7	0.0000359078
8	0.0000070432
9	0.0000013815
10	0.0000002709

enabling us to check the value of $v[0]$ calculated earlier.

