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Abstract

The di�erence between the mean and the mode of a unimodal dis-
tribution is less than or equal to the square root of three times the
standard deviation.

It is reasonably well known that the di�erence between the mean and the
median of the distribution of a random variable is less than or equal to one
standard deviation - providing that all three statistics exist. Oliver Johnson
and Yuri Sukov[1] suggest that the similar result for the di�erence between
the mean and the mode is not generally known: in the case of a unimodal
distribution, it is in fact less than or equal to

√
3 standard deviations. This

note provides a simple proof. The result holds both for continuous and for
discrete random variables, providing that unimodal is de�ned sensibly.

For a continuous random variable X with a unimodal probability density
function fX(x), there will be a point which we will call the mode and label
as X̂, such that fX(x) is weakly increasing below X̂ and weakly decreasing
above X̂. The mode may not be uniquely de�ned if the maximum density
is achieved over an interval, such as the mode of a uniform distribution. In
such cases, we would have some limited discretion over which point we choose
to be the mode, and we shall use this discretion later. Note that while the
random variable X needs to be continuous, the density does not.

For a discrete random variable D, the de�nition of unimodal is similar but
slightly more complicated. Simply having one point having a higher proba-
bility than each of the others would be no more satisfactory than doing the
same for the density of a continuous random variable; so we need to apply
the idea of probability increasing up to the mode and decreasing above it.
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The problem is that there will be many intermediate points of zero prob-
ability, raising the question of which of these would destroy the unimodal
nature of the probability distribution. The answer used here is to require the
probability distribution to be restricted to a set of equally spaced points, so
if the gap between these points is g, then the entire probability is at points
at integer multiples of g from the mode D̂, and the probability mass function
P(D = D̂ + ig) for integer i is weakly increasing below D̂ and is weakly
decreasing above D̂. Again, we may have some limited discretion over which
point we choose to be the mode.

We use the following intuitive lemma to minimise variance. In essence,
it says that for two continuous random variables with the same mean, if the
density of the �rst is less than that of the second inside a certain interval,
and the density of the �rst exceeds that of the second outside the interval,
then the �rst has a larger variance than the second.

Lemma 1 If there are two continuous random variables Y and Z with den-
sities fY (x) and fZ(x), with the same mean µ, and there is an interval (a, b)
such that fY (x) ≤ fZ(x) ∀x∈(a, b) and fY (x) ≥ fZ(x) ∀x∈(−∞, a)∪ (b,∞),
then σ2

Y ≥ σ2
Z.

Proof The two densities must each integrate to 1, so∫ a

−∞
(fY (x)− fZ(x))dx−

∫ b

a

(fZ(x)− fY (x))dx +

∫ ∞

b

(fY (x)− fZ(x))dx = 0

and each of the integrands is non-negative in the range of its integral, so∫ a

−∞

(
x− a + b

2

)2

(fY (x)− fZ(x)) dx ≥
(

b− a

2

)2 ∫ a

−∞
(fY (x)− fZ(x)) dx

∫ b

a

(
x− a + b

2

)2

(fZ(x)− fY (x)) dx ≤
(

b− a

2

)2 ∫ b

a

(fZ(x)− fY (x)) dx

∫ ∞

b

(
x− a + b

2

)2

(fY (x)− fZ(x)) dx ≥
(

b− a

2

)2 ∫ ∞

b

(fY (x)− fZ(x)) dx

and by taking second moments about the point (a + b)/2, we get
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σ2
Y − σ2

Z =

(∫ ∞

−∞

(
x− a + b

2

)2

fY (x)dx−
(

µ− a + b

2

)2
)

−

(∫ ∞

−∞

(
x− a + b

2

)2

fZ(x)dx−
(

µ− a + b

2

)2
)

=

∫ a

−∞

(
x− a + b

2

)2

(fY (x)− fZ(x))dx

−
∫ b

a

(
x− a + b

2

)2

(fZ(x)− fY (x))dx

+

∫ ∞

b

(
x− a + b

2

)2

(fY (x)− fZ(x))dx

≥
(

b− a

2

)2
(∫ a

−∞
(fY (x)− fZ(x))dx

−
∫ b

a

(fZ(x)− fY (x))dx +

∫ ∞

b

(fY (x)− fZ(x))dx

)
= 0.

The proof of the next inequality shown here depends on �nding another
continuous random variable which meets the de�nition, has the same mean,
and which has a lower variance and so a lower standard deviation.

Theorem 2 Any continuous random variable X with a unimodal probability
density function, with a �nite mean µX and standard deviation σX , and with
a mode X̂, has:

|X̂ − µX | ≤
√

3σX .

Proof If X̂ = µX then we need go no further. Otherwise we will assume
X̂ > µX , since if X̂ < µX we can look at −X.

We can then compare the distribution of X with an random variable
U uniformly distributed between 2µX − X̂ and X̂. If U has the density
fU(x) = 1/(2X̂ − 2µX) if 2µX − X̂ < x ≤ X̂ and fU(x) = 0 if x ≤ X̂ or
2µX − X̂ < x, then it has mean µU = µX and variance σ2

U = (X̂ − µX)2/3.
We can choose the mode Û to be X̂.

Since fX(x) is weakly increasing below X̂, there is a point c ∈ [2µX−X̂, X̂]
where fX(x) ≤ fU(x)∀x∈(2µX−X̂, c) and fX(x) > fU(x)∀x∈(c, X̂); c might
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need to be X̂. In any case fX(x) ≥ 0 = fU(x)∀x∈(−∞, 2µX − X̂)∪ (X̂,∞).
So by taking the second moment about µX − (X̂ − c)/2, lemma 1 gives
σ2
X ≥ σ2

U = (X̂ − µX)2/3, leading to the result in the theorem.

Not surprisingly, the inequality becomes an equality for a uniform distri-
bution where the mode is taken as being at one end.

The result of lemma 1 can easily be extended to include points {xi} of
positive probability where P(Y = xi) ≤ P(Z = xi) inside (a, b) and where
P(Y = xi) ≥ P(Z = xi) in (−∞, 2µX − X̂) ∪ (X̂,∞). Theorem 2 can be
extended to cover a random variable X with a point of positive probability
at X̂, i.e. P(X = X̂) could be positive, but there cannot be any other such
points if X is to be basically continuous and have a unimodal distribution.

The inequality in theorem 2 also applies to discrete random variables; the
inequality becomes strict providing that the standard deviation is positive.

Theorem 3 Any discrete random variable D with an equally spaced uni-
modal probability mass function, with a �nite mean µD and positive standard
deviation σD, and with a mode D̂, has:

|D̂ − µD| <
√

3σD.

Proof If D̂ = µD then we need go no further. Otherwise we will assume
D̂ > µD, since if D̂ < µD we can look at −D.

We need a suitable continuous random variable X with a unimodal distri-
bution. Fortunately, there is an obvious distribution which with one careful
choice will produce the desired result. If the gap for D is g > 0 then we can
then specify the density of X as

fX(x) =
P(D = D̂ + ig)

g
when D̂ + (i− 1

2
)g < x ≤ D̂ + (i + 1

2
)g

for integer i. This will have mean µX = µD, and variance σ2
X = σ2

D + g2

12
.

Since the distribution of X is made up of parts of uniform density of
which the highest is around D̂, we have some discretion about selecting a
mode for X. Perhaps surprisingly, we will choose X̂ = D̂ + g

2
which trivially

gives

X̂ − µX = D̂ − µD + g
2

> g
2
.

X is a continuous random variable with a unimodal probability distribu-
tion, so from theorem 2 we have (X̂ − µX)2 ≤ 3σ2

X , and

(D̂ − µD)2 = (X̂ − µX − g
2
)2 = (X̂ − µX)2 − g(X̂ − µX) + g2

4

< (X̂ − µX)2 − g2

2
+ g2

4
≤ 3σ2

X − 3g2

12
= 3σ2

D

and taking the square root gives the result in the theorem.
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It is slightly surprising that the inequalities in theorems 2 and 3 are essen-
tially the same. Usually such inequalities involving location and dispersion
statistics are tighter for continuous unimodal distributions than for equally
spaced discrete unimodal distributions: this is because there are sequences
of discrete unimodal distributions which can converge in distribution to any
given continuous unimodal distribution by narrowing the gaps, but sequences
of continuous distributions which converge in distribution to a given discrete
unimodal distribution cannot all be unimodal, because of the gaps.

Carl Friedrich Gauss[2] produced an inequality broadly similar to Cheby-
shev's inequality, but instead based on the mode and on the second moment
about the mode E(|X − X̂|2). He called the square root of this error medius
metuendus in Latin and labelled it m, though something like rms mode devi-
ation and sX̂ might be clearer (rms for root mean square). Theorems 2 and
3 lead to simple constraints on this deviation.

Theorem 4 A random variable X (whether continuous or equally spaced
discrete) with a unimodal distribution, with a �nite mean µX and standard
deviation σX , and with a mode X̂ and rms mode deviation sX̂ , has:

σX ≤ sX̂ ≤ 2σX and |X̂ − µX | ≤
√

3

4
sX̂ .

Proof We have s2
X̂

= σ2
X + (X̂ − µX)2, as with all second moments.

This gives σ2
X ≤ s2

X̂
immediately; since theorems 2 and 3 amount to

(X̂ − µX)2 ≤ 3σ2
X , it also gives s2

X̂
≤ 4σ2

X , i.e. σ2
X ≥ 1

4
s2
X̂
, and thus it gives

(X̂ −µX)2 ≤ 3
4
s2
X̂
. Taking square roots gives the results in the theorem.
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