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Abstract
Many published datasets use rounded data, either because the

measurement process has limited precision, or to improve presentation
in the publication. This introduces an error of up to half the rounding
precision, but when several pieces of rounded data are added together,
the error in the sum can be larger. If the actual sum is also known, but
presented as rounded to the same level, then this can be visible as the
rounded components may not add up to the rounded sum; it can also
be clear when the components are presented as rounded percentages
but these do not add up 100%. Where this happens, publishers often
notate tables with the warning May not sum to total due to rounding
or something similar.

This note explores some of the probabilities of rounding errors and
visible rounding differences in sums, and provides tables of probabil-
ities of different rounding errors. If many of the individual pieces of
data are as small as the rounding precision or smaller, then this may
also introduce bias into the sum of the rounding errors: three theoret-
ical examples are considered, together with some actual data showing
visible rounding differences.

1 Cumulative rounding errors

Initially we shall assume that the rounding error on individual components,
the difference between the rounded and unrounded figure, is independently,
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continuously and uniformly distributed between −1
2

and 1
2

times the rounding
precision, with zero probability of being at the extremes. We can then find
the probability of distribution of the error of the sum by convoluting uni-
form distributions. Unfortunately this soon becomes complicated, though
perfectly manageable using integer arithmetic with an unlimited precision
computer. Writing Fn(x) = Prob(

∑n
i=1 Xi ≤ x) for the cumulative distri-

bution when n independent rounding errors are combined, we get for small
n

F1(x) = 2x+1
2

when −1
2
≤ x ≤ 1

2
.

F2(x) =

{
x2+2x+1

2
when −1 ≤ x ≤ 0

−x2+2x+1
2

when 0 ≤ x ≤ 1.

F3(x) =


8x3+36x2+54x+27

48
when −3

2
≤ x ≤ −1

2
−4x3+9x+6

12
when −1

2
≤ x ≤ 1

2
8x3−36x2+54x+21

48
when 1

2
≤ x ≤ 3

2
.

F4(x) =


x4+8x3+24x2+36x+16

24
when −2 ≤ x ≤ −1

−3x4−8x3+16x+12
24

when −1 ≤ x ≤ 0
3x4−8x3+16x+12

24
when 0 ≤ x ≤ 1

−x4+8x3−24x2+36x+8
24

when 1 ≤ x ≤ 2.

F5(x) =



32x5+400x4+2000x3+5000x2+6250x+3125
3840

when −5
2
≤ x ≤ −3

2
−64x5−400x4−800x3−200x2+1100x+955

1920
when −3

2
≤ x ≤ −1

2
48x5−200x3+575x+480

960
when −1

2
≤ x ≤ 1

2
−64x5+400x4−800x3+200x2+1100x+965

1920
when 1

2
≤ x ≤ 3

2
32x5−400x4+2000x3−5000x2+6250x+715

3840
when 3

2
≤ x ≤ 5

2
.

Some of these can be factorised or otherwise simplified, but this becomes
more difficult as n increases. An alternative is to use the central limit the-
orem, noting that the initial uniform distribution has mean 0 and variance
1
12

, and so (assuming independence) the sum of n such random variables has
mean 0 and variance n

12
; for large n and x, this indeed provides reasonable

approximations, though they are proportionately poor in the tails.
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So Fn(x) is the probability that with n rounded numbers, the error in the
sum due to rounding is less than or equal to x times the rounding precision.
Clearly

Fn(x) = 0 when x ≤ −n

2

Fn(x) = 1 when x ≥ n

2

and the extreme events
∑n

i=1 Xi = ±n
2

are possible but of zero probability.
In Fn(x), x is signed; more often, we may be interested in whether the

absolute value of the error in the sum is less than or equal to x times the
rounding precision for non-negative x. Calling this Gn(x), we have

Gn(x) = Fn(x)− Fn(−x) = 2Fn(x)− 1.

and so Gn(x) = 1 when x ≥ n
2
.

Rounding just one number gives a rounding error that is less than or
equal to half the rounding precision. The probability this remains the case
with the sum of n rounded numbers is Gn(1

2
), while the probability that the

error in the sum is less than the rounding precision is Gn(1).
Snedecor and Cochran[1] provide an example problem along these lines:

Example 4.8.8. When measurements are rounded to the near-
est whole number, it can often be assumed that the error due to
rounding is equally likely to lie anywhere between −0.5 and +0.5.
That is, rounding errors follow a uniform distribution between the
limits −0.5 and +0.5. From theory, this distribution has µ = 0,
σ = 1/

√
12 = 0.29. If 100 independent, rounded measurements

are added, what is the probability that the error in the total due
to rounding does not exceed 5 in absolute value? Ans. P = 0.916.

Clearly the problem is asking us to find G100(5). Calculating the hundred
convolutions gives the precise probability of

89 120254 737023 412678 295281 505362 351118 315198 761494 175906
148647 751101 687378 532185 619182 956244 927133 663945 989014 866250
791030 484901 069916 977940 250347 876393 / 97 214807 754108 492376
770040 475277 813011 162466 942064 189029 784337 390851 666659 614495
425980 691641 829706 548180 935334 195024 748178 317928 038400 000000
000000 000000, about 0.91674.
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The hint about the value of σ and the position in the book suggest that
problem does not expect such precision and instead expects use of the central
limit theorem as a reasonable approximation. For a Gaussian distribution,
the probability of being within an interval 2.9 standard deviations either side
of the mean is about 0.91532, while being more precise about the square root
of 1

12
would give a probability of about 0.91674, suggesting that the provided

answer faces some rounding issues of its own.

2 Visible rounding differences

That kind of analysis gives some indication of the probable sizes of errors
introduced to a sum as a result of rounding. However, the actual error is
not generally visible to external observers. But when individual items and
the total are each rounded after the calculation of the unrounded sum, it is
sometimes possible to observe that the rounded total is not equal to the sum
of the rounded items. To remind readers of this and to avoid unnecessary en-
quires, many tables include the caveat May not sum to total due to rounding
or something similar.

The analysis of the possible difference between sum of the rounded parts
and the separately rounded total is similar to that before, but this time
the rounded total must be an integer multiple of the rounding precision.
So the probability that no error is visible is Fn(1

2
) − Fn(−1

2
) = Gn(1

2
). If

the Snedecor and Cochran example had been reworded to ask What is the
probability that the difference between the sum of the rounded individual mea-
surements and the rounded total does not exceed 5 in absolute value? then
the answer would be G100(5

1
2
) or about 0.94325. We could go further and

look at the probabilities of particular values of the signed difference between
the sum of n rounded parts and the rounded total: if this difference was d
times the rounding precision and the probability was Hn(d) then

Hn(d) = Fn(d + 1
2
)− Fn(d− 1

2
).

3 Visible percentage differences

In many tables of sums, values themselves are not shown, and instead the
parts are shown as percentages of the total at 100. Depending on how many
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places are shown, this may involve rounding with more or less precision.
Clearly the independence assumption used before has been lost, and the re-
sults will not be the same. To illustrate this, if there are only two parts, they
can produce a visible rounding difference in the sum, but they cannot as per-
centages except in extreme cases: for example, 32.343 and 44.234 summing to
76.577 produces a difference when rounded but 42.236% and 57.764% sum-
ming to 100% does not. 42.5% and 57.5% might produce a visible rounding
error depending on the rounding method, but this is by assumption a zero
probability event.

Fortunately, it is possible to handle find a reasonable first approximation
to using rounded percentages despite losing independence. If we only look
at the fractional part of the rounding error for one part, our assumption is
that this is uniform on [−1

2
, 1

2
] times the rounding precision, as shown by

the derivative of F1(x). But for the fractional part it is also uniform on the
same interval (modulo 1) for two parts, and by induction it is therefore also
uniform on the same interval (modulo 1) for n− 1 parts.

So if a further part is needed to reach the unrounded sum of 100%, this
further part will produce a fractional rounding error of the same magnitude
but opposite in sign to fractional rounding error of the sum of the first n− 1
rounded parts, and so we can take that it as having the same distribution
as each of the others. Since this rounding error is less in magnitude than 1

2

of the rounding precision, it does not add anything to the visible rounding
difference caused by the first n − 1 parts, and this means that if the signed
difference between the sum of the n rounded parts and 100% was d times the
rounding precision and the probability was Jn(d) then

Jn(d) = Hn−1(d).

4 Using the central limit theorem

Tables for Fn(x), Gn(x) and Hn(d), and so implicitly Jn(d), are shown in
later sections. But since these are based on the sum of independent identical
distributions with finite variances, we can use the central limit theorem to
use a Gaussian distribution to approximate these values.

The mean of one rounding error is 0 with a standard deviation of
√

1
12

times the rounding precision. So the sum of n parts also has mean 0 and stan-
dard deviation

√
n
12

. Writing Φ(x) for the cumulative distribution function
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of a standard Gaussian random variable with mean 0 and standard deviation
1, and φ(x) as the density, we then have

Fn(x) ≈ Φ

(√
12

n
x

)

and thus

Gn(x) ≈ 2Φ

(√
12

n
x

)
− 1

and

Hn(d) ≈ Φ

(√
12

n

(
d +

1

2

))
− Φ

(√
12

n

(
d− 1

2

))
≈
√

12

n
φ

(√
12

n
d

)
.

Using this Gaussian approximation for Fn(x) produces values which have
a difference of less than 0.001 from the correct figure for |x| > 2 or n > 11,
but requires much larger values to achieve better levels of accuracy. Since
the approximations for Gn(x) are twice as inaccurate, to be sure of figures
which are within 0.001 of the correct figure, these become x > 3 or n > 56.
The approximation for G100(5) is within 10−7 of the correct figure, but this
is fortuitous: for G100(2) the approximation is more than 5× 10−4 too high,
while for G100(7) the approximation is over 1.4× 10−4 too low.

As magnitudes, the Gaussian approximations are dreadful in the tails:
for example with |d| ≥ 39 and n ≤ 100 they give magnitudes for Hn(d) more
than 1011 times the true figure, but this is in terms of very small probabilities
as the true figure for H100(39) is about 1.244×10−52 while the approximations
suggest values of around 7× 10−41or 3× 10−41.

The second Gaussian approximation given for Hn(d) is notably weaker
for Hn(0), the probability of no visible rounding error. Better than either
appears to be something like

Hn(0) = Gn(1
2
) ≈

√
6

π (n + 1.3)

and so

Jn(0) ≈

√
6

π (n + 0.3)
.
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5 Rounding a geometric series

It is easy to find cases of rounding large numbers of small parts. Take for
example this geometric series

1 +
9

10
+

81

100
+

729

1000
+

6561

10000
+ · · · = 10.

With a rounding precision of 1, the rounded terms are just the sum of seven
ones giving a sum of the rounded parts of 7, and so a rounding difference of
−3. But taking a rounding precision of 0.01, the first 51 parts each round
to a positive number, and their sum is 9.98, giving a rounding difference
of −2 times the rounding precision. Going further, a rounding precision of
0.000001 requires the sum of 138 rounded parts making 10.000001 with a vis-
ible rounding difference of +1 times the rounding precision. So the rounding
difference is variable; as it also depends on the factor in the geometric series,
we may be able to approximate some kind of expected rounding difference.

If we have a series of the form

∞∑
j=1

bkj

for some constants b > 0 and 0 < k < 1, and use a rounding precision of p > 0
with b substantially greater than p, then the terms which round to exactly

p lie in the interval
[

1
2
p, 3

2
p
]
. We can expect about

log( 3p
2 )−log( p

2)
− log(k)

= log(3)
− log(k)

of

them, and similarly about log(2i+1)−log(2i−1)
− log(k)

terms rounding to ip, and so on
all the way up to b; positive rounding errors are more likely than negative
ones. We can use Stirling’s formula to find that the expected total rounding
error associated with terms rounding to a positive number is about

b
p∑

i=1

∫ min(i+ 1
2
, b
p
)

i− 1
2

i− x

−x loge(k)
dx ≈

b
p
loge

(
b
p

)
−
(

b
p
− 1

2

)
−
∑ b

p

i=1 loge

(
i− 1

2

)
− loge(k)

=

1
2

+ loge

((
4
e

b
p

) b
p ( b

p)!

( 2b
p )!

)
− loge(k)

≈ 1− loge(2)

−2 loge(k)

times the rounding precision.
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For the terms which round to zero, the largest term lies in the interval[
k
2
p, 1

2
p
]

and so the negative of their sum is the rounding error and lies be-
tween −k

2(1−k)
and −1

2(1−k)
times the rounding precision. Using a similar assump-

tion for the distribution to that implicitly assumed for the terms rounding to
positive numbers (not that it makes much difference at this stage except for
neatness), a reasonable central figure to take is 1

2 loge(k)
times the rounding

precision. This is negative and larger than the approximate expectation for
the rounding error for terms rounding to positive numbers.

So the overall expectation for the rounding error for the sum of a geo-
metric series is about

log(2)

2 log(k)

times the rounding precision, and is negative since k < 1; given its relatively
small size and the variability of rounding errors, many actual rounded geo-
metric series can have a positive rounding error. For k = 9

10
shown in the

example at the start of this section, it suggests a figure of roughly −3.3 times
the rounding precision. With tighter precision the expected rounding error
tends to get smaller in absolute terms, but its expected value does not change
substantially as a multiple of the rounding precision.

6 Rounding a power-law series

The previous example showed a case where the expected rounding error was
small. It is possible to make it much larger: take for example this power-law
series, the Basel problem calculating ζ(2):

1 +
1

4
+

1

9
+

1

16
+

1

25
+ · · · = π2

6
≈ 1.644934.

With a rounding precision of 1, the rounded terms are just 1+0+0+0+0+· · ·
giving a sum of the rounded parts of 1, while rounding the actual sum gives
2. But taking a rounding precision of 0.01, the first fourteen parts round to
a positive figure, and their sum is 1.59 while rounding the actual sum gives
1.64 giving a rounding difference of −5 times the rounding precision. Going
further, a rounding precision of 0.000001 requires the sum of 1414 rounded
parts to give 1.644332 giving a visible rounding difference of −602 times the
rounding precision.
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So making the rounding precision smaller tends to make the rounding
error and the visible rounding difference a more negative multiple of the
rounding precision. The exponent of the power law series also has an impact
and here we used −2: it is no surprise that the rounding error gets worse
more quickly if the exponent is −1.5 than if it is −4 as we have more parts
close to the rounding precision. If we have a series of the form

∞∑
j=1

bj−k

for some constants b > 0 and k > 1, and use a rounding precision of p > 0,
then some experimentation suggests that the expected rounding error and
visible rounding difference for a rounded power-law series might be something
of the order of

−0.6(k − 1)−1.2

(
b

p

) 1
k

times the rounding precision. It will not be that precise value both because
the experimentation did not deliver a precise result and because of the natu-
ral distribution of errors, but for small k and large b

p
it will dominate. Taking

b = 1 and k = 2 as in the example at the beginning of this section, it gives ex-
pected rounding errors of −0.6 when the rounding precision is 1; −6 times the
rounding precision when that is 0.01; and −600 times the rounding precision
when that is 0.000001. With tighter precision the expected rounding error
tends to get smaller in absolute terms, but tends to get bigger in magnitude
as a multiple of the rounding precision.

7 A realistic distribution for percentages

The earlier section on percentages suggested it is possible to have identical
locally uniform distributions for the parts of 100%, that is to say of 1. But
at a global level, these is less realistic. It might be more plausible to consider
a distribution which has a constant density subject to the constraints that
each of the n parts is non-negative and their sum is 1. The density turns out
to be (n − 1)!. It produces the following conditional distributions where k
parts are known: if we label the known parts in any order Ai with values ai

for 1 ≤ i ≤ k, and the unknown parts in any order Ak+j for 1 ≤ j ≤ n−k−1,
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we have

Prob(Ak+j ≤ x|A1 = a1, . . . , Ak = ak) = 1−

(
1− x

1−
∑k

i=1 ai

)n−k−1

when 0 ≤ x ≤ 1−
k∑

i=1

ai

and finally when n− 1 parts are known

An = 1−
n−1∑
i=1

ai

so each part is identically distributed. Even if the overall density is constant,
each part is more likely to be smaller than larger, as its marginal probability
density is

f(x) = (n− 1)(1− x)n−2 for 0 ≤ x ≤ 1

which is decreasing in x so the signed rounding error as the difference between
the rounded and the unrounded value of each part is therefore more likely to
be negative than positive; the expected value of each part is of course 1

n
.

Imagine there are just three parts and the rounding precision is 50%, so
each part is rounded to 0%, 50% or 100%. This is unrealistic, but is designed
to demonstrate the idea simply enough to fit on the page while conveying the
calculation. So a part will produce negative rounding error if its unrounded
part is between 0% and 25% or between 50% or 75%, and positive rounding
error otherwise. But there may be offsetting rounding errors from the other
parts. To get a negative visible rounding difference from the three rounded
parts, two must round to 0% and one to 50% adding to 50%, while to get a
positive visible rounding difference each must round to 50% adding to 150%;
with more parts or a smaller rounding precision there would be many more
possibilities. The probability of a negative visible rounding difference is∫ 1

4

0

∫ 1
4

1
4
−x

2 dy dx +

∫ 1
4

0

∫ 3
4

3
4
−x

2 dy dx +

∫ 3
4

1
2

∫ 1
4

3
4
−x

2 dy dx =
1

16
+

1

16
+

1

16
=

3

16

while the probability of a positive visible rounding difference is∫ 1
2

1
4

∫ 3
4
−x

1
4

2 dy dx =
1

16
.
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The earlier uniform approximation gave J3(−1) = J3(1) = 1
8
. With this

more realistic distribution, we find that with rounded percentages there is a
higher probability of the sum of the rounded parts being less than 100%, as
expected.

That example used a very large rounding precision. Using a more obvious
rounding precision of 1% would give probabilities of negative and positive
visible rounding differences of 101

800
and 99

800
respectively; using 0.1% would

give 1001
8000

and 999
8000

respectively, with an obvious pattern. This justifies the
earlier approximation as having been reasonable, but only when the rounding
precision is small compared with the average size of the parts.

With a rounding precision of p, we can work out the expected rounding
error for each part and multiply by n to find the bias or expected total
rounding error or visible rounding difference to be

n

p

1
p∑

j=0

∫ min(1,jp+ 1
2
)

max(0,jp− 1
2
)

(jp−x)(n−1)(1−x)n−2dx = −1

p
+n
(p

2

)n−1

1
p∑

j=1

(2j−1)n−1

times the rounding precision. This expected rounding error will be negative:
for small np with relatively few parts compared with the precision, this will
be minor and close to −n(n−1)p

24
times the rounding precision; for large np it

will tend towards −1
p

+ n(1− p
2
)n−1 times the rounding precision, as almost

all the parts will round to 0 and so the sum of the rounded parts will be
close to 0. For example, with 100 parts and a rounding precision of 0.1% the
expected rounding error is about −0.41 times the rounding precision so we
expect the sum of the rounded parts to be close to 100.0%, but then allowing
for the dispersion of J100(d) ; with 1000 parts and a rounding precision of
1% the expected rounding error is about −93.3 times the rounding precision
so we expect the sum of the rounded parts to be close to a hopeless 7%,
again with some dispersion. With a fixed number of parts, tighter precision
tends to reduce the magnitude of expected rounding error as a multiple of
the rounding precision.

8 An real example: reported vote shares

Two different methods have been put forward for estimating visible rounding
differences for percentages by making assumptions about plausible distribu-
tions for rounding errors. In reality, distributions will not exactly follow
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either of these assumptions, and this can affect the results though possibly
not by enough to notice. This example illustrates such a case.

The Electoral Commission[2][3] published the results of the United King-
dom 2001 and 2005 parliamentary general elections showing the votes won by
each candidate in each constituency. It also published the share of each can-
didate’s vote in their constituency rounded to 0.1%, and in some constituen-
cies the sums of these showed visible percentage differences. For example,
in Aberavon in 2001, the votes for the seven candidates were 19063, 2955,
2933, 2296, 1960, 727 and 256, making a total of 30190 so the vote shares
were shown as 63.1%, 9.8%, 9.7%, 7.6%, 6.5%, 2.4% and 0.8%, summing to
99.9% giving a visible difference of −0.1%.

In 2001 there were 3319 candidates in 659 constituencies, implying a
mean number of about 5.04 candidates per constituency. The number in
individual constituencies ranged from three to nine: 45 constituencies had
three candidates, 198 had four, 208 had five, 134 had six, 49 had seven, 20
had eight, and 5 had nine. 1177 of the candidates lost their £500 deposits
by receiving less than a 5% share of the valid votes in their constituency.

The election four years later in 2005 saw more candidates: there were 3554
candidates in 646 constituencies after some boundaries in Scotland had been
redrawn, implying a mean number of about 5.50 candidates per constituency.
The number in individual constituencies ranged from three to fifteen: 21
constituencies had three candidates, 136 had four, 215 had five, 128 had six,
92 had seven, 34 had eight, 17 had nine, 2 had ten, and 1 (Sedgefield) had
an astonishing fifteen. 1385 of the candidates lost their deposits.

If we used the symmetric numbers for Jn(d), weighted for the number of
candidates per constituency, we could predict the number of constituencies
with particular visible rounding differences. This table compares the actual
distribution of sums of rounded vote percentages with these predictions.

Sum of rounded Actual Predicted Actual Predicted
percentages in 2001 for 2001 in 2005 for 2005

99.7% 0 0.01 0 0.03
99.8% 3 3.06 8 4.58
99.9% 144 125.97 117 129.48

100.0% 398 400.93 376 377.82
100.1% 111 125.97 138 129.48
100.2% 3 3.06 7 4.58
100.3% 0 0.01 0 0.03
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χ2-tests with four degrees of freedom would not suggest the actual figures
were significantly different from the predictions.

The distribution of vote shares of candidates was not consistent with the
constant density percentage distribution assumed earlier: that would have
predicted about 649.3 and 766.1 lost deposits in 2001 and 2005 respectively,
just over half of the actual values which reflected the large number of fringe
candidates. Despite that, the number of candidates who had such a low
share of the vote that it rounded to 0.0% was smaller than would have been
predicted: the constant density distribution would have predicted about 7.2
and 8.6 while the actual figures in the two elections were 0 and 4. So the
expected negative bias in the visible rounding differences might be overstated
by the constant density percentage distribution, and it was in any case small
since the predictions add up to about a net −0.06% and −0.07% across the
all constituencies in each of the two elections; in fact the total net visible
rounding differences were −3.3% and +1.9% in 2001 and 2005 respectively,
with the natural dispersion of results overwhelming any bias.

Finally, the results also showed the majority in each constituency: the
difference in votes between the most and second most popular candidates and
similarly as a proportion of the total valid votes. As a vote share, this too
showed visible rounding differences, and although it involves a subtraction
rather than an addition, a similar analysis should be possible, leading to a
distribution similar to H2(d) of 1

8
, 3

4
and 1

8
; we use Hn(d) rather than Jn(d)

since the two percentages are not constrained to come to a particular figure.
Again taking Aberavon in 2001 as an example, the top two vote shares were
given as 63.1% and 9.8% but the majority of 16108 votes was shown as 53.4%,
giving a visible difference of −0.1%. The following table compares the actual
and predicted visible rounding differences in the majorities.

Visible Actual Predicted Actual Predicted
differences in 2001 for 2001 in 2005 for 2005

in majorities
−0.1% 90 82.375 93 80.75

0.0% 480 494.25 478 484.5
+0.1% 89 82.375 75 80.75

Again χ2-tests, this time with two degrees of freedom, would not sug-
gest the actual figures were significantly different from the predictions. If a
Gaussian approximation had been used instead, they would seem significant.
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9 Table of Fn(x)

The cumulative distribution Fn(x): the probability that the signed rounding
error of the sum of n rounded terms is less than or equal to x times the

rounding precision. By symmetry Fn(0) =
1

2
and Fn(−x) = 1− Fn(x).

n Fn(0.5) Fn(1) Fn(1.5) Fn(2) Fn(2.5) Fn(3) Fn(3.5) Fn(4) Fn(4.5) Fn(5) Fn(5.5)
1 1
2 0.875 1
3 0.83333 0.97917 1
4 0.79948 0.95833 0.99740 1
5 0.775 0.93802 0.99167 0.99974 1
6 0.75551 0.91944 0.98431 0.99861 0.99998 1
7 0.73968 0.90260 0.97599 0.99662 0.99980 1.00000 1
8 0.72646 0.88738 0.96724 0.99385 0.99937 0.99998 1.00000 1
9 0.71521 0.87360 0.95836 0.99044 0.99861 0.99989 1.00000 1.00000 1

10 0.70548 0.86110 0.94955 0.98654 0.99753 0.99972 0.99998 1.00000 1.00000 1
11 0.69696 0.84970 0.94092 0.98226 0.99613 0.99943 0.99995 1.00000 1.00000 1.00000 1
12 0.68942 0.83927 0.93255 0.97772 0.99442 0.99899 0.99988 0.99999 1.00000 1.00000 1.00000
13 0.68269 0.82969 0.92447 0.97300 0.99245 0.99841 0.99976 0.99998 1.00000 1.00000 1.00000
14 0.67662 0.82085 0.91670 0.96817 0.99024 0.99767 0.99958 0.99995 1.00000 1.00000 1.00000
15 0.67112 0.81267 0.90924 0.96328 0.98784 0.99678 0.99934 0.99990 0.99999 1.00000 1.00000
16 0.66610 0.80506 0.90209 0.95837 0.98527 0.99575 0.99902 0.99983 0.99998 1.00000 1.00000
17 0.66150 0.79798 0.89524 0.95346 0.98255 0.99457 0.99863 0.99972 0.99996 1.00000 1.00000
18 0.65727 0.79136 0.88868 0.94860 0.97973 0.99327 0.99815 0.99959 0.99993 0.99999 1.00000
19 0.65335 0.78515 0.88239 0.94379 0.97681 0.99185 0.99759 0.99941 0.99988 0.99998 1.00000
20 0.64971 0.77932 0.87637 0.93904 0.97383 0.99032 0.99695 0.99920 0.99983 0.99997 1.00000
21 0.64631 0.77383 0.87059 0.93438 0.97079 0.98869 0.99624 0.99894 0.99975 0.99995 0.99999
22 0.64314 0.76865 0.86505 0.92980 0.96771 0.98698 0.99545 0.99863 0.99965 0.99993 0.99999
23 0.64016 0.76374 0.85973 0.92531 0.96461 0.98519 0.99458 0.99828 0.99953 0.99989 0.99998
24 0.63737 0.75910 0.85462 0.92091 0.96149 0.98334 0.99365 0.99788 0.99939 0.99985 0.99997
25 0.63473 0.75468 0.84971 0.91660 0.95837 0.98143 0.99265 0.99744 0.99922 0.99979 0.99995
26 0.63224 0.75049 0.84499 0.91240 0.95525 0.97946 0.99159 0.99694 0.99902 0.99973 0.99993
27 0.62988 0.74649 0.84044 0.90828 0.95214 0.97745 0.99047 0.99641 0.99880 0.99965 0.99991
28 0.62765 0.74268 0.83606 0.90427 0.94905 0.97541 0.98930 0.99582 0.99855 0.99955 0.99988
29 0.62552 0.73904 0.83183 0.90034 0.94597 0.97334 0.98808 0.99520 0.99827 0.99944 0.99984
30 0.62350 0.73555 0.82776 0.89651 0.94292 0.97124 0.98682 0.99453 0.99796 0.99932 0.99980
31 0.62158 0.73222 0.82382 0.89277 0.93990 0.96912 0.98552 0.99383 0.99762 0.99917 0.99974
32 0.61974 0.72902 0.82002 0.88912 0.93691 0.96698 0.98417 0.99308 0.99725 0.99901 0.99968
33 0.61798 0.72595 0.81634 0.88555 0.93395 0.96484 0.98280 0.99230 0.99686 0.99883 0.99961
34 0.61630 0.72300 0.81279 0.88206 0.93102 0.96269 0.98140 0.99148 0.99643 0.99864 0.99953
35 0.61468 0.72016 0.80935 0.87866 0.92813 0.96053 0.97996 0.99063 0.99598 0.99842 0.99944
36 0.61314 0.71742 0.80601 0.87534 0.92528 0.95837 0.97851 0.98975 0.99550 0.99819 0.99933
37 0.61165 0.71479 0.80278 0.87209 0.92246 0.95621 0.97703 0.98884 0.99500 0.99793 0.99922
38 0.61022 0.71225 0.79965 0.86892 0.91969 0.95405 0.97553 0.98790 0.99446 0.99766 0.99909
39 0.60884 0.70979 0.79661 0.86582 0.91695 0.95190 0.97402 0.98694 0.99391 0.99737 0.99895
40 0.60752 0.70742 0.79366 0.86279 0.91424 0.94976 0.97249 0.98595 0.99333 0.99706 0.99880
41 0.60624 0.70513 0.79079 0.85983 0.91158 0.94763 0.97095 0.98494 0.99273 0.99673 0.99864
42 0.60501 0.70291 0.78801 0.85694 0.90896 0.94550 0.96939 0.98391 0.99210 0.99639 0.99846
43 0.60381 0.70076 0.78530 0.85411 0.90637 0.94339 0.96783 0.98286 0.99145 0.99602 0.99828
44 0.60266 0.69868 0.78266 0.85134 0.90382 0.94129 0.96627 0.98179 0.99079 0.99564 0.99807
45 0.60155 0.69666 0.78010 0.84863 0.90131 0.93921 0.96469 0.98071 0.99010 0.99524 0.99786
46 0.60047 0.69470 0.77760 0.84597 0.89884 0.93714 0.96311 0.97961 0.98939 0.99482 0.99763
47 0.59942 0.69280 0.77517 0.84338 0.89640 0.93508 0.96153 0.97849 0.98867 0.99439 0.99739
48 0.59841 0.69096 0.77280 0.84084 0.89401 0.93304 0.95995 0.97736 0.98793 0.99394 0.99714
49 0.59743 0.68916 0.77049 0.83835 0.89164 0.93102 0.95837 0.97623 0.98717 0.99348 0.99688
50 0.59647 0.68742 0.76823 0.83591 0.88932 0.92901 0.95678 0.97508 0.98640 0.99300 0.99660
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Fn(x) continued: the probability that the signed rounding error of the sum
of n rounded terms is less than or equal to x times the rounding precision.

Fn(0) =
1

2
and Fn(−x) = 1− Fn(x).

n Fn(0.5) Fn(1) Fn(1.5) Fn(2) Fn(2.5) Fn(3) Fn(3.5) Fn(4) Fn(4.5) Fn(5) Fn(5.5)
51 0.59555 0.68572 0.76603 0.83352 0.88702 0.92702 0.95520 0.97392 0.98562 0.99250 0.99631
52 0.59465 0.68407 0.76388 0.83118 0.88477 0.92505 0.95362 0.97275 0.98482 0.99199 0.99601
53 0.59377 0.68246 0.76179 0.82889 0.88254 0.92309 0.95205 0.97157 0.98400 0.99147 0.99569
54 0.59292 0.68089 0.75974 0.82664 0.88035 0.92116 0.95048 0.97039 0.98318 0.99093 0.99536
55 0.59209 0.67936 0.75774 0.82443 0.87819 0.91924 0.94891 0.96921 0.98234 0.99038 0.99503
56 0.59128 0.67787 0.75578 0.82227 0.87607 0.91734 0.94734 0.96801 0.98149 0.98982 0.99468
57 0.59050 0.67642 0.75387 0.82015 0.87397 0.91546 0.94579 0.96682 0.98064 0.98924 0.99432
58 0.58973 0.67500 0.75200 0.81806 0.87191 0.91359 0.94424 0.96561 0.97977 0.98866 0.99394
59 0.58898 0.67361 0.75017 0.81602 0.86988 0.91175 0.94269 0.96441 0.97889 0.98806 0.99356
60 0.58825 0.67226 0.74838 0.81401 0.86787 0.90992 0.94115 0.96321 0.97801 0.98745 0.99317
61 0.58754 0.67094 0.74662 0.81204 0.86590 0.90812 0.93962 0.96200 0.97712 0.98683 0.99277
62 0.58685 0.66965 0.74491 0.81011 0.86395 0.90633 0.93810 0.96079 0.97622 0.98620 0.99235
63 0.58617 0.66839 0.74322 0.80821 0.86204 0.90456 0.93658 0.95958 0.97531 0.98557 0.99193
64 0.58551 0.66715 0.74157 0.80634 0.86015 0.90280 0.93508 0.95837 0.97440 0.98492 0.99150
65 0.58486 0.66594 0.73996 0.80451 0.85828 0.90107 0.93358 0.95716 0.97348 0.98426 0.99106
66 0.58423 0.66476 0.73838 0.80271 0.85645 0.89935 0.93209 0.95595 0.97256 0.98360 0.99061
67 0.58361 0.66360 0.73682 0.80094 0.85464 0.89765 0.93061 0.95474 0.97163 0.98293 0.99015
68 0.58300 0.66247 0.73530 0.79919 0.85285 0.89597 0.92914 0.95353 0.97070 0.98225 0.98968
69 0.58241 0.66136 0.73380 0.79748 0.85109 0.89431 0.92767 0.95233 0.96976 0.98157 0.98920
70 0.58183 0.66027 0.73234 0.79580 0.84935 0.89266 0.92622 0.95112 0.96883 0.98087 0.98872
71 0.58126 0.65920 0.73090 0.79414 0.84764 0.89103 0.92478 0.94992 0.96788 0.98017 0.98823
72 0.58071 0.65816 0.72948 0.79251 0.84595 0.88942 0.92334 0.94872 0.96694 0.97947 0.98773
73 0.58016 0.65713 0.72810 0.79091 0.84429 0.88783 0.92192 0.94753 0.96599 0.97876 0.98723
74 0.57963 0.65613 0.72673 0.78933 0.84264 0.88625 0.92050 0.94634 0.96504 0.97804 0.98671
75 0.57911 0.65514 0.72539 0.78778 0.84102 0.88469 0.91910 0.94515 0.96409 0.97732 0.98619
76 0.57859 0.65417 0.72408 0.78625 0.83942 0.88314 0.91770 0.94396 0.96314 0.97660 0.98567
77 0.57809 0.65322 0.72279 0.78475 0.83784 0.88161 0.91632 0.94278 0.96219 0.97587 0.98514
78 0.57759 0.65229 0.72151 0.78326 0.83628 0.88010 0.91494 0.94160 0.96123 0.97513 0.98460
79 0.57711 0.65138 0.72026 0.78180 0.83474 0.87860 0.91358 0.94043 0.96028 0.97439 0.98405
80 0.57663 0.65048 0.71904 0.78037 0.83323 0.87712 0.91222 0.93926 0.95932 0.97365 0.98351
81 0.57617 0.64959 0.71783 0.77895 0.83173 0.87565 0.91087 0.93810 0.95837 0.97291 0.98295
82 0.57571 0.64872 0.71664 0.77756 0.83025 0.87420 0.90954 0.93694 0.95741 0.97216 0.98239
83 0.57526 0.64787 0.71547 0.77618 0.82879 0.87276 0.90821 0.93578 0.95646 0.97141 0.98183
84 0.57482 0.64703 0.71432 0.77483 0.82734 0.87134 0.90690 0.93463 0.95550 0.97065 0.98126
85 0.57438 0.64621 0.71318 0.77349 0.82592 0.86993 0.90559 0.93349 0.95455 0.96990 0.98068
86 0.57395 0.64540 0.71207 0.77217 0.82451 0.86853 0.90429 0.93235 0.95360 0.96914 0.98011
87 0.57353 0.64460 0.71097 0.77088 0.82312 0.86715 0.90301 0.93121 0.95264 0.96838 0.97953
88 0.57312 0.64381 0.70989 0.76960 0.82175 0.86579 0.90173 0.93008 0.95169 0.96761 0.97894
89 0.57272 0.64304 0.70883 0.76833 0.82039 0.86444 0.90046 0.92896 0.95075 0.96685 0.97835
90 0.57232 0.64228 0.70778 0.76709 0.81905 0.86310 0.89921 0.92784 0.94980 0.96608 0.97776
91 0.57192 0.64153 0.70674 0.76586 0.81773 0.86177 0.89796 0.92673 0.94885 0.96531 0.97716
92 0.57154 0.64080 0.70572 0.76465 0.81642 0.86046 0.89672 0.92562 0.94791 0.96454 0.97656
93 0.57116 0.64007 0.70472 0.76345 0.81513 0.85916 0.89549 0.92452 0.94696 0.96377 0.97596
94 0.57078 0.63936 0.70373 0.76228 0.81385 0.85788 0.89427 0.92342 0.94602 0.96300 0.97535
95 0.57041 0.63866 0.70276 0.76111 0.81259 0.85660 0.89306 0.92233 0.94509 0.96223 0.97474
96 0.57005 0.63796 0.70180 0.75996 0.81134 0.85534 0.89186 0.92124 0.94415 0.96146 0.97413
97 0.56969 0.63728 0.70085 0.75883 0.81011 0.85409 0.89067 0.92016 0.94322 0.96069 0.97352
98 0.56934 0.63661 0.69992 0.75771 0.80889 0.85286 0.88949 0.91909 0.94229 0.95991 0.97290
99 0.56900 0.63595 0.69900 0.75661 0.80769 0.85163 0.88831 0.91802 0.94136 0.95914 0.97229

100 0.56865 0.63530 0.69809 0.75551 0.80649 0.85042 0.88715 0.91696 0.94043 0.95837 0.97167
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10 Table of Gn(x)

Gn(x): the probability that the absolute rounding error of the sum of n
rounded terms is less than or equal to x times the rounding precision. We
have Gn(0) = 0 since Gn(x) = 2Fn(x)− 1.

n Gn(0.5) Gn(1) Gn(1.5) Gn(2) Gn(2.5) Gn(3) Gn(3.5) Gn(4) Gn(4.5) Gn(5) Gn(5.5)
1 1
2 0.75 1
3 0.66667 0.95833 1
4 0.59896 0.91667 0.99479 1
5 0.55 0.87604 0.98333 0.99948 1
6 0.51102 0.83889 0.96862 0.99722 0.99996 1
7 0.47937 0.80519 0.95198 0.99324 0.99960 1.00000 1
8 0.45292 0.77475 0.93448 0.98770 0.99873 0.99995 1.00000 1
9 0.43042 0.74720 0.91672 0.98088 0.99723 0.99979 0.99999 1.00000 1

10 0.41096 0.72220 0.89909 0.97307 0.99506 0.99944 0.99997 1.00000 1.00000 1
11 0.39393 0.69940 0.88185 0.96453 0.99225 0.99885 0.99990 1.00000 1.00000 1.00000 1
12 0.37884 0.67855 0.86511 0.95545 0.98884 0.99799 0.99976 0.99998 1.00000 1.00000 1.00000
13 0.36537 0.65938 0.84895 0.94601 0.98490 0.99682 0.99952 0.99995 1.00000 1.00000 1.00000
14 0.35324 0.64170 0.83341 0.93634 0.98049 0.99534 0.99917 0.99990 0.99999 1.00000 1.00000
15 0.34224 0.62533 0.81849 0.92656 0.97568 0.99356 0.99868 0.99980 0.99998 1.00000 1.00000
16 0.33221 0.61013 0.80418 0.91673 0.97053 0.99149 0.99805 0.99965 0.99996 1.00000 1.00000
17 0.32301 0.59596 0.79048 0.90693 0.96511 0.98914 0.99725 0.99945 0.99992 0.99999 1.00000
18 0.31453 0.58272 0.77736 0.89720 0.95945 0.98654 0.99630 0.99918 0.99986 0.99998 1.00000
19 0.30669 0.57031 0.76478 0.88757 0.95362 0.98370 0.99519 0.99883 0.99977 0.99996 1.00000
20 0.29941 0.55864 0.75274 0.87809 0.94765 0.98064 0.99391 0.99839 0.99965 0.99994 0.99999
21 0.29262 0.54766 0.74118 0.86876 0.94157 0.97739 0.99248 0.99787 0.99950 0.99990 0.99998
22 0.28628 0.53729 0.73010 0.85959 0.93542 0.97396 0.99089 0.99726 0.99930 0.99985 0.99997
23 0.28033 0.52749 0.71946 0.85061 0.92921 0.97039 0.98916 0.99656 0.99906 0.99978 0.99996
24 0.27473 0.51819 0.70924 0.84182 0.92298 0.96668 0.98729 0.99576 0.99878 0.99970 0.99994
25 0.26946 0.50937 0.69942 0.83321 0.91673 0.96285 0.98529 0.99487 0.99844 0.99959 0.99991
26 0.26448 0.50098 0.68997 0.82479 0.91050 0.95892 0.98317 0.99389 0.99805 0.99946 0.99987
27 0.25977 0.49298 0.68088 0.81657 0.90428 0.95491 0.98094 0.99281 0.99760 0.99930 0.99982
28 0.25530 0.48536 0.67211 0.80853 0.89809 0.95082 0.97860 0.99165 0.99710 0.99911 0.99976
29 0.25105 0.47808 0.66366 0.80069 0.89194 0.94667 0.97616 0.99040 0.99653 0.99889 0.99968
30 0.24701 0.47111 0.65551 0.79302 0.88585 0.94248 0.97364 0.98907 0.99592 0.99863 0.99959
31 0.24315 0.46444 0.64764 0.78554 0.87980 0.93824 0.97103 0.98765 0.99524 0.99835 0.99949
32 0.23948 0.45804 0.64004 0.77823 0.87382 0.93397 0.96835 0.98616 0.99450 0.99803 0.99936
33 0.23596 0.45190 0.63269 0.77110 0.86790 0.92968 0.96560 0.98460 0.99371 0.99767 0.99922
34 0.23259 0.44599 0.62558 0.76413 0.86205 0.92537 0.96279 0.98296 0.99286 0.99728 0.99906
35 0.22937 0.44031 0.61870 0.75733 0.85627 0.92105 0.95993 0.98126 0.99196 0.99684 0.99887
36 0.22627 0.43485 0.61203 0.75068 0.85056 0.91673 0.95701 0.97950 0.99100 0.99638 0.99867
37 0.22330 0.42958 0.60557 0.74419 0.84493 0.91242 0.95406 0.97768 0.98999 0.99587 0.99844
38 0.22044 0.42449 0.59930 0.73785 0.83937 0.90811 0.95106 0.97581 0.98893 0.99532 0.99818
39 0.21769 0.41959 0.59322 0.73165 0.83389 0.90381 0.94803 0.97388 0.98782 0.99474 0.99791
40 0.21504 0.41484 0.58732 0.72559 0.82849 0.89952 0.94497 0.97190 0.98666 0.99412 0.99761
41 0.21248 0.41026 0.58158 0.71967 0.82316 0.89525 0.94189 0.96988 0.98545 0.99347 0.99728
42 0.21001 0.40582 0.57601 0.71388 0.81791 0.89101 0.93879 0.96782 0.98420 0.99277 0.99693
43 0.20763 0.40152 0.57059 0.70821 0.81274 0.88678 0.93567 0.96572 0.98291 0.99204 0.99655
44 0.20533 0.39736 0.56532 0.70267 0.80764 0.88258 0.93253 0.96358 0.98157 0.99128 0.99615
45 0.20310 0.39332 0.56019 0.69725 0.80262 0.87841 0.92938 0.96141 0.98020 0.99048 0.99572
46 0.20094 0.38941 0.55520 0.69195 0.79768 0.87427 0.92623 0.95921 0.97879 0.98965 0.99527
47 0.19885 0.38561 0.55033 0.68676 0.79281 0.87016 0.92307 0.95698 0.97734 0.98878 0.99479
48 0.19682 0.38191 0.54559 0.68167 0.78801 0.86608 0.91990 0.95473 0.97586 0.98788 0.99428
49 0.19485 0.37832 0.54097 0.67670 0.78328 0.86203 0.91674 0.95245 0.97435 0.98695 0.99375
50 0.19295 0.37483 0.53646 0.67182 0.77863 0.85802 0.91357 0.95015 0.97281 0.98599 0.99320
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Gn(x) continued: the probability that the absolute rounding error of the
sum of n rounded terms is less than or equal to x times the rounding precision.
Gn(0) = 0.

n Gn(0.5) Gn(1) Gn(1.5) Gn(2) Gn(2.5) Gn(3) Gn(3.5) Gn(4) Gn(4.5) Gn(5) Gn(5.5)
51 0.19109 0.37144 0.53206 0.66704 0.77405 0.85404 0.91041 0.94783 0.97123 0.98500 0.99261
52 0.18929 0.36813 0.52777 0.66236 0.76953 0.85009 0.90725 0.94550 0.96963 0.98398 0.99201
53 0.18754 0.36492 0.52357 0.65777 0.76508 0.84618 0.90410 0.94315 0.96801 0.98293 0.99138
54 0.18584 0.36178 0.51948 0.65327 0.76070 0.84231 0.90095 0.94079 0.96636 0.98186 0.99073
55 0.18418 0.35872 0.51548 0.64886 0.75639 0.83848 0.89782 0.93841 0.96468 0.98076 0.99005
56 0.18256 0.35574 0.51156 0.64454 0.75213 0.83468 0.89469 0.93603 0.96299 0.97963 0.98935
57 0.18099 0.35284 0.50774 0.64029 0.74795 0.83091 0.89157 0.93363 0.96127 0.97848 0.98863
58 0.17946 0.35000 0.50400 0.63613 0.74382 0.82719 0.88847 0.93123 0.95954 0.97731 0.98789
59 0.17797 0.34723 0.50034 0.63204 0.73975 0.82350 0.88538 0.92882 0.95778 0.97612 0.98712
60 0.17651 0.34452 0.49675 0.62803 0.73575 0.81985 0.88231 0.92641 0.95602 0.97490 0.98634
61 0.17509 0.34188 0.49325 0.62409 0.73180 0.81623 0.87924 0.92399 0.95423 0.97366 0.98553
62 0.17370 0.33930 0.48981 0.62022 0.72791 0.81266 0.87620 0.92158 0.95243 0.97241 0.98471
63 0.17234 0.33677 0.48645 0.61642 0.72407 0.80911 0.87317 0.91916 0.95062 0.97113 0.98386
64 0.17102 0.33430 0.48315 0.61269 0.72029 0.80561 0.87015 0.91674 0.94880 0.96984 0.98300
65 0.16972 0.33189 0.47992 0.60902 0.71657 0.80214 0.86716 0.91432 0.94696 0.96853 0.98211
66 0.16846 0.32952 0.47675 0.60541 0.71289 0.79871 0.86418 0.91190 0.94512 0.96720 0.98121
67 0.16722 0.32720 0.47364 0.60187 0.70927 0.79531 0.86121 0.90948 0.94326 0.96586 0.98029
68 0.16601 0.32494 0.47060 0.59839 0.70570 0.79195 0.85827 0.90707 0.94140 0.96450 0.97936
69 0.16482 0.32272 0.46761 0.59496 0.70218 0.78862 0.85535 0.90465 0.93953 0.96313 0.97841
70 0.16366 0.32054 0.46467 0.59160 0.69871 0.78533 0.85244 0.90225 0.93765 0.96175 0.97744
71 0.16253 0.31841 0.46180 0.58828 0.69528 0.78207 0.84955 0.89985 0.93577 0.96035 0.97646
72 0.16142 0.31632 0.45897 0.58502 0.69190 0.77884 0.84668 0.89745 0.93388 0.95894 0.97546
73 0.16033 0.31427 0.45619 0.58182 0.68857 0.77565 0.84383 0.89506 0.93198 0.95752 0.97445
74 0.15926 0.31226 0.45347 0.57866 0.68529 0.77250 0.84100 0.89267 0.93009 0.95609 0.97342
75 0.15821 0.31028 0.45079 0.57556 0.68204 0.76937 0.83819 0.89030 0.92819 0.95464 0.97239
76 0.15718 0.30835 0.44816 0.57250 0.67884 0.76628 0.83540 0.88793 0.92628 0.95319 0.97134
77 0.15618 0.30645 0.44557 0.56949 0.67568 0.76322 0.83263 0.88556 0.92437 0.95173 0.97027
78 0.15519 0.30458 0.44303 0.56653 0.67257 0.76019 0.82988 0.88321 0.92247 0.95026 0.96920
79 0.15422 0.30275 0.44053 0.56361 0.66949 0.75720 0.82715 0.88086 0.92056 0.94879 0.96811
80 0.15327 0.30095 0.43807 0.56073 0.66645 0.75423 0.82444 0.87852 0.91865 0.94730 0.96701
81 0.15233 0.29919 0.43565 0.55790 0.66346 0.75130 0.82175 0.87620 0.91674 0.94581 0.96590
82 0.15142 0.29745 0.43328 0.55511 0.66050 0.74839 0.81908 0.87388 0.91482 0.94432 0.96478
83 0.15052 0.29574 0.43094 0.55236 0.65757 0.74552 0.81643 0.87157 0.91292 0.94281 0.96365
84 0.14963 0.29406 0.42863 0.54965 0.65469 0.74267 0.81379 0.86927 0.91101 0.94130 0.96252
85 0.14876 0.29242 0.42637 0.54698 0.65184 0.73986 0.81118 0.86697 0.90910 0.93979 0.96137
86 0.14791 0.29079 0.42414 0.54435 0.64903 0.73707 0.80859 0.86469 0.90719 0.93827 0.96021
87 0.14707 0.28920 0.42194 0.54175 0.64625 0.73431 0.80602 0.86242 0.90529 0.93675 0.95905
88 0.14624 0.28763 0.41978 0.53919 0.64350 0.73158 0.80346 0.86017 0.90339 0.93522 0.95788
89 0.14543 0.28608 0.41765 0.53667 0.64079 0.72887 0.80093 0.85792 0.90149 0.93369 0.95670
90 0.14463 0.28456 0.41555 0.53418 0.63811 0.72620 0.79841 0.85568 0.89959 0.93216 0.95551
91 0.14385 0.28307 0.41349 0.53172 0.63546 0.72355 0.79592 0.85345 0.89770 0.93063 0.95432
92 0.14307 0.28160 0.41145 0.52930 0.63285 0.72092 0.79344 0.85124 0.89581 0.92909 0.95312
93 0.14231 0.28015 0.40944 0.52691 0.63026 0.71832 0.79098 0.84903 0.89393 0.92755 0.95192
94 0.14156 0.27872 0.40747 0.52455 0.62771 0.71575 0.78854 0.84684 0.89205 0.92601 0.95070
95 0.14083 0.27731 0.40552 0.52222 0.62518 0.71321 0.78612 0.84465 0.89017 0.92446 0.94949
96 0.14010 0.27593 0.40360 0.51993 0.62269 0.71068 0.78372 0.84248 0.88830 0.92292 0.94827
97 0.13939 0.27456 0.40170 0.51766 0.62022 0.70819 0.78134 0.84032 0.88643 0.92137 0.94704
98 0.13868 0.27322 0.39983 0.51542 0.61778 0.70571 0.77897 0.83818 0.88457 0.91983 0.94581
99 0.13799 0.27190 0.39799 0.51321 0.61537 0.70326 0.77663 0.83604 0.88271 0.91828 0.94457

100 0.13731 0.27059 0.39617 0.51103 0.61299 0.70084 0.77430 0.83391 0.88086 0.91674 0.94333
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11 Table of Hn(d)

Hn(d): the probability that the signed visible rounding difference between the
sum of n rounded terms and the rounded sum is equal to d times the rounding
precision. Hn(d) = Fn(d+ 1

2
)−Fn(d− 1

2
), so by symmetry Hn(−d) = Hn(d).

If instead percentages are used making the sum 100%, then the probability is
about Jn(d) = Hn−1(d) times the rounding precision, so using the preceding
row.

n Hn(0) Hn(1) Hn(2) Hn(3) Hn(4) Hn(5) Hn(6) Hn(7) Hn(8) Hn(9) Hn(10)
1 1 0
2 0.75 0.125
3 0.66667 0.16667 0
4 0.59896 0.19792 0.00260
5 0.55 0.21667 0.00833 0
6 0.51102 0.22880 0.01567 0.00002
7 0.47937 0.23631 0.02381 0.00020 0
8 0.45292 0.24078 0.03213 0.00063 0.00000
9 0.43042 0.24315 0.04026 0.00138 0.00000 0

10 0.41096 0.24407 0.04798 0.00245 0.00002 0.00000
11 0.39393 0.24396 0.05520 0.00382 0.00005 0.00000 0
12 0.37884 0.24313 0.06187 0.00546 0.00012 0.00000 0.00000
13 0.36537 0.24179 0.06797 0.00731 0.00024 0.00000 0.00000 0
14 0.35324 0.24008 0.07354 0.00934 0.00041 0.00000 0.00000 0.00000
15 0.34224 0.23812 0.07860 0.01150 0.00065 0.00001 0.00000 0.00000 0
16 0.33221 0.23599 0.08317 0.01376 0.00095 0.00002 0.00000 0.00000 0.00000
17 0.32301 0.23374 0.08731 0.01607 0.00133 0.00004 0.00000 0.00000 0.00000 0
18 0.31453 0.23141 0.09105 0.01842 0.00178 0.00007 0.00000 0.00000 0.00000 0.00000
19 0.30669 0.22905 0.09442 0.02078 0.00229 0.00011 0.00000 0.00000 0.00000 0.00000 0
20 0.29941 0.22666 0.09746 0.02313 0.00287 0.00017 0.00000 0.00000 0.00000 0.00000 0.00000
21 0.29262 0.22428 0.10019 0.02545 0.00351 0.00024 0.00001 0.00000 0.00000 0.00000 0.00000
22 0.28628 0.22191 0.10266 0.02774 0.00421 0.00034 0.00001 0.00000 0.00000 0.00000 0.00000
23 0.28033 0.21957 0.10487 0.02997 0.00495 0.00045 0.00002 0.00000 0.00000 0.00000 0.00000
24 0.27473 0.21726 0.10687 0.03216 0.00574 0.00058 0.00003 0.00000 0.00000 0.00000 0.00000
25 0.26946 0.21498 0.10866 0.03428 0.00657 0.00073 0.00004 0.00000 0.00000 0.00000 0.00000
26 0.26448 0.21275 0.11026 0.03634 0.00744 0.00091 0.00006 0.00000 0.00000 0.00000 0.00000
27 0.25977 0.21055 0.11170 0.03833 0.00833 0.00111 0.00009 0.00000 0.00000 0.00000 0.00000
28 0.25530 0.20841 0.11299 0.04025 0.00925 0.00133 0.00012 0.00001 0.00000 0.00000 0.00000
29 0.25105 0.20631 0.11414 0.04211 0.01019 0.00157 0.00015 0.00001 0.00000 0.00000 0.00000
30 0.24701 0.20425 0.11517 0.04390 0.01114 0.00184 0.00019 0.00001 0.00000 0.00000 0.00000
31 0.24315 0.20224 0.11608 0.04561 0.01210 0.00212 0.00024 0.00002 0.00000 0.00000 0.00000
32 0.23948 0.20028 0.11689 0.04727 0.01308 0.00243 0.00030 0.00002 0.00000 0.00000 0.00000
33 0.23596 0.19837 0.11760 0.04885 0.01406 0.00275 0.00036 0.00003 0.00000 0.00000 0.00000
34 0.23259 0.19649 0.11823 0.05037 0.01504 0.00310 0.00043 0.00004 0.00000 0.00000 0.00000
35 0.22937 0.19466 0.11879 0.05183 0.01602 0.00346 0.00051 0.00005 0.00000 0.00000 0.00000
36 0.22627 0.19288 0.11927 0.05323 0.01699 0.00383 0.00060 0.00006 0.00000 0.00000 0.00000
37 0.22330 0.19113 0.11968 0.05456 0.01797 0.00422 0.00070 0.00008 0.00001 0.00000 0.00000
38 0.22044 0.18943 0.12003 0.05585 0.01893 0.00463 0.00080 0.00010 0.00001 0.00000 0.00000
39 0.21769 0.18777 0.12033 0.05707 0.01989 0.00504 0.00092 0.00012 0.00001 0.00000 0.00000
40 0.21504 0.18614 0.12058 0.05824 0.02084 0.00547 0.00104 0.00014 0.00001 0.00000 0.00000
41 0.21248 0.18455 0.12079 0.05937 0.02178 0.00591 0.00117 0.00017 0.00002 0.00000 0.00000
42 0.21001 0.18300 0.12095 0.06044 0.02271 0.00636 0.00132 0.00020 0.00002 0.00000 0.00000
43 0.20763 0.18148 0.12107 0.06146 0.02362 0.00682 0.00147 0.00023 0.00003 0.00000 0.00000
44 0.20533 0.18000 0.12116 0.06244 0.02452 0.00729 0.00162 0.00027 0.00003 0.00000 0.00000
45 0.20310 0.17855 0.12121 0.06338 0.02541 0.00776 0.00179 0.00031 0.00004 0.00000 0.00000
46 0.20094 0.17713 0.12124 0.06427 0.02628 0.00824 0.00196 0.00035 0.00005 0.00000 0.00000
47 0.19885 0.17574 0.12124 0.06513 0.02714 0.00872 0.00215 0.00040 0.00006 0.00001 0.00000
48 0.19682 0.17439 0.12121 0.06595 0.02798 0.00921 0.00233 0.00045 0.00007 0.00001 0.00000
49 0.19485 0.17306 0.12116 0.06673 0.02881 0.00970 0.00253 0.00051 0.00008 0.00001 0.00000
50 0.19295 0.17176 0.12108 0.06747 0.02962 0.01019 0.00273 0.00057 0.00009 0.00001 0.00000
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Hn(d) continued: the probability that the signed visible rounding differ-
ence between the sum of n rounded terms and the rounded sum is equal
to d times the rounding precision. Hn(−d) = Hn(d). For percentages, the
probability is about Jn(d) = Hn−1(d) times the rounding precision.

n Hn(0) Hn(1) Hn(2) Hn(3) Hn(4) Hn(5) Hn(6) Hn(7) Hn(8) Hn(9) Hn(10)
51 0.19109 0.17049 0.12099 0.06818 0.03041 0.01069 0.00294 0.00063 0.00010 0.00001 0.00000
52 0.18929 0.16924 0.12088 0.06886 0.03119 0.01119 0.00316 0.00070 0.00012 0.00002 0.00000
53 0.18754 0.16802 0.12075 0.06951 0.03196 0.01169 0.00338 0.00077 0.00014 0.00002 0.00000
54 0.18584 0.16682 0.12061 0.07013 0.03270 0.01219 0.00361 0.00085 0.00016 0.00002 0.00000
55 0.18418 0.16565 0.12045 0.07071 0.03343 0.01269 0.00384 0.00092 0.00018 0.00003 0.00000
56 0.18256 0.16450 0.12028 0.07128 0.03415 0.01318 0.00408 0.00101 0.00020 0.00003 0.00000
57 0.18099 0.16337 0.12010 0.07181 0.03485 0.01368 0.00433 0.00110 0.00022 0.00004 0.00000
58 0.17946 0.16227 0.11991 0.07233 0.03553 0.01418 0.00457 0.00119 0.00025 0.00004 0.00001
59 0.17797 0.16119 0.11971 0.07281 0.03620 0.01467 0.00483 0.00128 0.00027 0.00005 0.00001
60 0.17651 0.16012 0.11950 0.07328 0.03686 0.01516 0.00508 0.00138 0.00030 0.00005 0.00001
61 0.17509 0.15908 0.11928 0.07372 0.03749 0.01565 0.00534 0.00149 0.00033 0.00006 0.00001
62 0.17370 0.15806 0.11905 0.07414 0.03812 0.01614 0.00561 0.00159 0.00037 0.00007 0.00001
63 0.17234 0.15705 0.11881 0.07455 0.03873 0.01662 0.00587 0.00170 0.00040 0.00008 0.00001
64 0.17102 0.15607 0.11857 0.07493 0.03932 0.01710 0.00614 0.00182 0.00044 0.00009 0.00001
65 0.16972 0.15510 0.11832 0.07529 0.03990 0.01758 0.00642 0.00193 0.00048 0.00010 0.00002
66 0.16846 0.15415 0.11807 0.07564 0.04047 0.01805 0.00669 0.00205 0.00052 0.00011 0.00002
67 0.16722 0.15321 0.11781 0.07597 0.04102 0.01852 0.00697 0.00218 0.00056 0.00012 0.00002
68 0.16601 0.15229 0.11755 0.07628 0.04156 0.01898 0.00725 0.00231 0.00061 0.00013 0.00002
69 0.16482 0.15139 0.11729 0.07658 0.04209 0.01944 0.00753 0.00244 0.00066 0.00015 0.00003
70 0.16366 0.15051 0.11702 0.07687 0.04261 0.01989 0.00781 0.00257 0.00071 0.00016 0.00003
71 0.16253 0.14963 0.11674 0.07713 0.04311 0.02035 0.00809 0.00270 0.00076 0.00018 0.00003
72 0.16142 0.14878 0.11647 0.07739 0.04360 0.02079 0.00838 0.00284 0.00081 0.00019 0.00004
73 0.16033 0.14793 0.11619 0.07763 0.04408 0.02123 0.00866 0.00298 0.00087 0.00021 0.00004
74 0.15926 0.14710 0.11591 0.07786 0.04454 0.02167 0.00895 0.00313 0.00092 0.00023 0.00005
75 0.15821 0.14629 0.11563 0.07808 0.04500 0.02210 0.00923 0.00328 0.00098 0.00025 0.00005
76 0.15718 0.14549 0.11534 0.07828 0.04544 0.02253 0.00952 0.00342 0.00104 0.00027 0.00006
77 0.15618 0.14470 0.11506 0.07848 0.04587 0.02295 0.00981 0.00358 0.00111 0.00029 0.00006
78 0.15519 0.14392 0.11477 0.07866 0.04629 0.02336 0.01010 0.00373 0.00117 0.00031 0.00007
79 0.15422 0.14315 0.11448 0.07883 0.04670 0.02378 0.01039 0.00388 0.00124 0.00034 0.00008
80 0.15327 0.14240 0.11419 0.07899 0.04710 0.02418 0.01067 0.00404 0.00131 0.00036 0.00009
81 0.15233 0.14166 0.11390 0.07915 0.04749 0.02458 0.01096 0.00420 0.00138 0.00039 0.00009
82 0.15142 0.14093 0.11361 0.07929 0.04787 0.02498 0.01125 0.00436 0.00145 0.00042 0.00010
83 0.15052 0.14021 0.11332 0.07943 0.04824 0.02537 0.01153 0.00453 0.00153 0.00044 0.00011
84 0.14963 0.13950 0.11303 0.07955 0.04861 0.02575 0.01182 0.00469 0.00161 0.00047 0.00012
85 0.14876 0.13880 0.11274 0.07967 0.04896 0.02614 0.01210 0.00486 0.00168 0.00050 0.00013
86 0.14791 0.13812 0.11244 0.07978 0.04930 0.02651 0.01239 0.00502 0.00176 0.00054 0.00014
87 0.14707 0.13744 0.11215 0.07989 0.04964 0.02688 0.01267 0.00519 0.00185 0.00057 0.00015
88 0.14624 0.13677 0.11186 0.07998 0.04996 0.02725 0.01295 0.00536 0.00193 0.00060 0.00016
89 0.14543 0.13611 0.11157 0.08007 0.05028 0.02760 0.01324 0.00553 0.00202 0.00064 0.00017
90 0.14463 0.13546 0.11128 0.08015 0.05059 0.02796 0.01352 0.00571 0.00210 0.00067 0.00019
91 0.14385 0.13482 0.11099 0.08023 0.05089 0.02831 0.01379 0.00588 0.00219 0.00071 0.00020
92 0.14307 0.13419 0.11070 0.08030 0.05119 0.02865 0.01407 0.00606 0.00228 0.00075 0.00021
93 0.14231 0.13357 0.11041 0.08036 0.05147 0.02899 0.01435 0.00623 0.00237 0.00079 0.00023
94 0.14156 0.13295 0.11012 0.08042 0.05175 0.02933 0.01462 0.00641 0.00246 0.00083 0.00024
95 0.14083 0.13235 0.10983 0.08047 0.05202 0.02966 0.01490 0.00658 0.00256 0.00087 0.00026
96 0.14010 0.13175 0.10955 0.08052 0.05229 0.02998 0.01517 0.00676 0.00265 0.00091 0.00028
97 0.13939 0.13116 0.10926 0.08056 0.05255 0.03030 0.01544 0.00694 0.00275 0.00096 0.00029
98 0.13868 0.13057 0.10897 0.08060 0.05280 0.03062 0.01571 0.00712 0.00285 0.00100 0.00031
99 0.13799 0.13000 0.10869 0.08063 0.05304 0.03093 0.01597 0.00730 0.00295 0.00105 0.00033

100 0.13731 0.12943 0.10841 0.08065 0.05328 0.03124 0.01624 0.00748 0.00305 0.00110 0.00035
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