
SHAPE-MEMORYLESS PROBABILITY DISTRIBUTIONS

HENRY BOTTOMLEY

Abstract. The exponential and geometric probability distributions have the

memoryless property, in that past events do not affect the future distribution.
This property can be extended to wider families of distributions if the past is
allowed to change the scale but not the shape of the future distribution.

1. Introduction

The property of memorylessness in probability distributions involves conditional
probability distributions about the future given that an event has not occurred in
the past being the same as the original prior probability distribution. For example,
if the lifetime of an unstable atomic particle is seen as a random variable with
an exponential probability distribution with a known parameter, and it fails to
decay in a certain time, then the probability of its future lifetime follows the
same distribution; it has no memory of its failure to decay in the past. A non-
negative random variable X has a memorylessness probability distribution provided
that Pr(X > x + y|X > y) = Pr(X > x) or, using survival functions where
S(x) = Pr(X > x), provided that S(x + y)/S(y) = S(x). For an exponential
distribution, we have S(x) = exp(−kx) for some positive k, and so we demonstrate
memorylessness using exp(−k(x + y))/ exp(−ky) = exp(−kx).

As an illustration of memorylessness, consider the probability that a random
variable with an exponential distribution exceeds its expected value. In effect we
have to calculate

(1.1) S(E[X]) = exp

(

−k

∫

∞

0

x exp(−kx)dx

)

= exp(−1) ≈ 0.37

but looking at the position beyond a point y ≥ 0 we get the same result for the
conditional remaining expectation and probability

(1.2) S(E[X − y|X > y]|X > y) =
exp

(

−k
∫

∞

y
x exp(−kx)dx − y

)

exp(−ky)
= exp(−1)

so this calculation produces a constant. Are there other distributions which also
produce a constant, perhaps with a different value?

One obvious case is a random variable U with a continuous uniform distribution
on the interval [0, c]. Clearly, by the symmetry of the distribution, the probability
it exceeds its expected value is 1

2 . But this remains the case looking beyond any
point y with 0 ≤ y < c. So we have found a memoryless property for a distribution
which is not conventionally considered to be memoryless.
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In one sense we have cheated. The expectation of U is c
2 , while the conditional

expectation given U > y is c+y
2 and so the remaining expectation is c−y

2 , rather less
than we originally had. But in another sense we are not cheating, as the remaining
distribution beyond y is still uniform; all that has happened is that the scale has
changed, while the shape of the remaining distribution has stayed the same. The
aim of this note is to find other examples where the shape remains the same, even
if the scale changes to maintain that shape.

More generally, since the conditional shape of the conditional distribution is
maintained, so too is the conditional value of any scale-independent statistic. In
other words, this means that if a positive random variable X has a shape-memoryless
distribution and f [X] is a statistic of the distribution where f [aX] = f [X] for all
positive a, then f [X − y|X > y] = f [X] for any y in the support of X. This could
be anything from the skewness or kurtosis, if they exist, to the probability of being
in excess of 1 1

2 times the interquartile range below the first quartile or above the
third quartile (often shown outliers in a box-and-whisker plot).

As an illustration of shape-memorylessness on a discrete distribution, this time
without a finite expectation, consider the payoffs of the game in the Bernoullis’ St

Petersburg game of 1, 2, 4, 8, 16, . . . with probabilities 1
2 , 1

4 , 1
8 , 1

16 , 1
32 , . . . respectively.

This is not quite shape-memoryless, but it would be if the payoffs were reduced by 1
2

each to 1
2 , 1 1

2 , 3 1
2 , 7 1

2 , 15 1
2 , . . . : for example, initially the payoff 11

2 with probability
1
4 is three times as high as the payoff 1

2 with probability 1
2 and the payoff 31

2 with

probability 1
8 is seven times as high, while if we know the payoff will be over say

1 1
2 then the additional payoff 71

2 − 1 1
2 = 6 with conditional probability 1/16

1/4 = 1
4

is again three times as high as the additional payoff 31
2 − 1 1

2 = 2 with conditional

probability 1
2 and the additional payoff 151

2 − 1 1
2 = 14 with conditional probability

1
8 is again seven times as high. This pattern would continue looking at other payoffs
and different cutoff points.

2. Shape-memorylessness for continuous distributions

We start with a standard definition of memorylessness.

Definition 1. A positive random variable X has a memoryless probability distribution

if for x, y ≥ 0

(2.1) Pr(X > x + y|X > y) = Pr(X > x)

or equivalently in terms of survival functions where S(x) means Pr(X > x)

(2.2)
S(x + y)

S(y)
= S(x)

for all x, y in the support of X.

Consider graphically what this means. S(x + y) is what remains of the survival
function beyond y. As a function of x it is lower than S(x) because survival
functions decrease. But multiplying it by 1/S(y) makes it the same as S(x).

For a shape-memoryless distribution we are allowed slightly more flexibility. As
a function of x, S(x + y)/S(y) need not be equal to S(x) but it must have the
same shape. Our only freedom of manoeuvre is a change of scale in x, stretching
or compressing the survival function say by a factor r which may depend on y. So
we get the following definition.
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Definition 2. A positive random variable X has a shape-memoryless probability

distribution if for x, y ≥ 0

(2.3)
S(r(y)x + y)

S(y)
= S(x)

or equivalently in terms of probability

(2.4) Pr(X > r(y)x + y|X > y) = Pr(X > x)

for all x, y in the support of X and for some scaling function r(y).

The two examples of shape-memoryless probability distributions which we have
already considered satisfy that definition: the exponential distribution with survival
function S(x) = exp(−kx) has r(y) = 1 while the uniform distribution on [0, c] with
S(x) = 1 − x/c has r(y) = 1 − y/c. This, combined with taking powers, is enough
to give us a family or two of shape-memoryless probability distributions.

Theorem 1. A shape-memoryless continuous probability distribution of a positive

random variable has a survival function either of the form

(2.5) S(x) = exp(−kx) with x ≥ 0 and k > 0,

or of the form

(2.6) S(x) = (1 − x/c)β

either with 0 ≤ x ≤ c, β > 0 and c > 0, or with x ≥ 0, β < 0 and c < 0.

Proof. From the definition of shape-memorylessness, we have the functional equation

(2.7) S(x)S(y) = S(r(y)x + y)

but we also have S(y)S(x) = S(r(x)y + x) and so r(x)y + x = r(y)x + y requiring
either r(x) = r(y) = 1 or x/(1 − r(x)) = y/(1 − r(y)).

If r(x) = 1 then the functional equation reduces to S(x+y) = S(y)S(x) which is
the exponential form of Cauchy’s functional equation,[1] and given the monotonic
decreasing nature of a survival function, this would imply S(x) = exp(−kx) for
some positive k.

Otherwise we have x/(1− r(x)) constant, say equal to non-zero c, thus implying

(2.8) r(x) = 1 − x/c and S(x)S(y) = S(x + y − xy/c).

Repeating the operation by taking the positive integer nth power of S(x) and setting
this equal to S(z) for some z, we get by induction

(2.9) S(z) = S(x)n = S(c − c(1 − x/c)n)

and thus both

(2.10) z = c − c(1 − x/c)n and x = c − c(1 − z/c)1/n

which implies for any positive rational q

(2.11) S(x)q = S(c − c(1 − x/c)q)

and, since survival functions decrease monotonically, this result can be extended to
the positive reals, meaning that knowing c and S(x0) for any single value of x0, we
can calculate S(x) as

(2.12) S(x) = S(x0)
log(1−x/c)/ log(1−x0/c).
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The functional equation is satisfied mathematically by any

(2.13) S(x) = (1 − x/c)β

so all we need to do is ensure that such an S(x) is indeed a survival function; for
that we need S(x) to be between 0 and 1 and to be decreasing. But its derivative
(the negative of the probability density) is

(2.14)
dS

dx
= −(β/c)(1 − x/c)β−1

and so we require β and c to have the same sign, and if those signs are positive we
require 0 ≤ x ≤ c. Given c and S(x0) for any single value of x0 we can calculate
β = log(S(x0))/ log(1 − x0/c). So, together with the exponential distribution,
these provide a complete list of survival functions for continuous random variables
meeting the functional equation. �

If β and c are both positive then we have a probability distribution with finite
support on (0, c]. This can be seen as a kind of stretched beta distribution where
the first parameter is 1. It has mean c/(1 + β) and a probability of exceeding the
mean of (1 − 1

1+β )β , which tends towards exp(−1) from above as β increases.

In contrast, if β and c are both negative as expressed in the theorem then we have
a probability distribution with semi-infinite support on (0,∞); providing β < −1 we
still have mean c/(1+β) and the same expression for the probability of exceeding the
mean, which tends towards exp(−1) from below as β grows in absolute magnitude.
This distribution could be seen as a kind of stretched beta prime distribution,
especially if we were to reverse both signs and write the survival function as S(x) =
(1 + x/c)−β with β and c both positive.

If we fix the expected value to be µ then the satisfactory survival functions can
be written as the exponential S(x) = exp(−x/µ) or as

(2.15) S(x) =

(

1 −
x

µ(1 + β)

)β

with the requirement that β ∈ (−∞,−1) ∪ (0,∞). As β increases in magnitude
towards ±∞ this converges in distribution to the exponential survival function.
The probability of exceeding the mean is

(2.16) S(µ) =

(

1 −
1

1 + β

)β

which takes every value in (0, 1) as β varies, other than the exp(−1) provided by
the exponential distribution.

For β = 1, the uniform probability density case, we have survival functions which
are linear, while for β = 2 and β = 1

2 we have survival functions which are arcs of
a parabola. For β = −1 we have survival functions which are part of a hyperbola,
and so it should not be a surprise when those particular distributions do not have
a mean. If c > 0 then c is the maximum value, i.e the smallest value of x where
S(x) = 0. If β tended to 0 from above, the distribution would tend towards the
degenerate case of a single point at x = c.

Since we know the derivative of the survival function, we can calculate the hazard
function. For an exponential distribution S(x) = exp(−kt) it is λ(x) = k. For the
other shape-memoryless distributions it is

(2.17) λ(x) = β/(c − x)
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Figure 1. Illustrations of the survival, density and hazard
functions of various shape-memoryless distributions with the same
mean

which is part of a hyperbola with an asymptote (rather notionally if c and β are
negative) at x = c. So hazard functions of this form, or by reversing the signs of
the form λ(x) = β/(c + x), have the shape-memoryless property; the case where
c = 0 is not a hazard function, unless it it regarded as producing a distribution
concentrated at x = 0.

If a shape-memoryless distribution has a mean µ = c/(1 + β) then we have
λ(x) = β/(µ(1 + β) − x) and curiously this gives λ(µ) = 1/µ, no matter what the
shape of the distribution; this is also the case for exponential distributions since
µ = 1/k.

3. Shape-memorylessness for discrete distributions

Ignoring the degenerate case of all probability concentrated at a single point,
any shape-memoryless discrete probability distribution must have support on an
infinite number of discrete points, as otherwise the conditional distribution would
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have support on fewer points than the original distribution and thus would enable
them to be distinguished.

A geometric distribution specified by Pr(X = n) = (1 − p)pn−1 for positive
integer n and 0 < p < 1 is memoryless and so shape-memoryless; multiplying all
the possible values of X by a constant a > 0 would also be a geometric distribution
and share the properties.

In general to achieve shape-memorylessness, the probability of each point must
be capable of being scaled to earlier points, and so the probabilities of successive
points must be in a geometric progression. The gaps between successive points
must also be capable of being scaled and so those gaps too must be in a geometric
progression. We can state this more precisely in the following theorem.

Theorem 2. A shape-memoryless discrete probability distribution of a positive

random variable has a probability mass function either of the form

(3.1) Pr(X = an) = (1 − p)pn−1

or of the form

(3.2) Pr

(

X = a
1 − bn

1 − b

)

= (1 − p)pn−1

for some a > 0 and 0 < p < 1, and in the second case b > 0 but not 1.
By labeling the successive points of the discrete distribution x1, x2, x3, . . ., this

then leads to a survival function either of the form

(3.3) S(xn) = exp(−kxn)

for some k > 0, or of the form

(3.4) S(xn) = (1 − xn/c)β

for some c and β.

Proof. From the shape-memoryless definition and considering a shift m points up
the distribution, we have

(3.5) S(xn+m)/S(xm) = S(xn) and xn+m = r(xm)xn + xm

for some scaling function r(xm). With m = 1, S(xn+1) = S(x1)S(xn) and letting
p = 1 − Pr(X = x1) = S(x1), this implies recursively that S(xn) = pn and thus
Pr(X = xn) = (1−p)pn−1. Letting a = x1 and b = r(x1), and again with m = 1, we
get xn+1 = bxn+a and so recursively xn = an when b = 1 and xn = a(1−bn)/(1−b)
otherwise. This gives the first part of the theorem.

If b = 1, we can set k = − loge(p)/a and get S(xn) = exp(−kxn), while if not
then we can set c = a/(1 − b) and β = log(p)/ log(b) so 1 − xn/c = bn = pn/β and
we get the familiar looking S(xn) = (1 − xn/c)β . �

Since we have essentially the same survival functions for discrete distributions
within their restricted supports, these survival functions continue to satisfy the
functional equation. If they have means, then they will be a/(1−bp), slightly greater
than the means of the corresponding continuous distributions with essentially the
same survival functions. To ensure a meaningful mean we must have bp < 1, or
equivalently either b = 1 or β > 0 or β < −1.
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Figure 2. Illustrations of the left-hand part of the probability
mass and survival functions of the variant of the St Petersburg
game, together with the survival function of the corresponding
continuous distribution

For the variant of the St Petersburg game described in the introduction, we have
the parameters a = 1

2 , b = 2, p = 1
2 , c = − 1

2 and β = −1, since

(3.6) Pr(X = xn+m|X > xm) =
1/2n+m

1/2m
=

1

2n
= Pr(X = xn) and

(3.7) xn+m =
2n+m − 1

2
= (2m − 1)

2n − 1

2
+

2m − 1

2
= 2xmxn + xm.

With bp ≥ 1 or equivalently −1 ≤ β ≤ 0, and in this particular case bp = 1 and
β = −1, there is no mean.
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